
Digital Image
Processing
Using MATLAB®

Second Edition

Rafael C. Gonzalez
University of Tennessee

Richard E. Woods
MedData Interactive

Steven L. Eddins
The MathWorks, Inc.

Gatesmark Publishing®
A Division of Gatesmark,® LLC
www.gatesmark.com

Library of Congress Cataloging-in-Publication Data on File

Library of Congress Control Number: 2009902793

© 2009 by Gatesmark, LLC

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any
means, without written permission from the publisher.

Gatesmark Publishing® is a registered trademark of Gatesmark, LLC, www.gatesmark.com.

Gatesmark® is a registered trademark of Gatesmark, LLC, www.gatesmark.com.

MATLAB® is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA
01760-2098

The authors and publisher of this book have used their best efforts in preparing this book. These
efforts include the development, research, and testing of the theories and programs to determine
their effectiveness. The authors and publisher shall not be liable in any event for incidental or
consequential damages with, or arising out of, the furnishing, performance, or use of these
programs.

Printed in the United States of America

10   9   8   7   6   5   4   3   2   1

ISBN 978-0-9820854-0-0

Gatesmark Publishing
A Division of Gatesmark, LLC
www.gatesmark.com

80

3 Intensity Transformations
and Spatial Filtering

Preview
The term spatial domain refers to the image plane itself, and methods in
this category are based on direct manipulation of pixels in an image. In this
chapter we focus attention on two important categories of spatial domain
processing: intensity (gray-level) transformations and spatial filtering. The lat-
ter approach sometimes is referred to as neighborhood processing, or spatial
convolution. In the following sections we develop and illustrate MATLAB
formulations representative of processing techniques in these two categories.
We also introduce the concept of fuzzy image processing and develop sever-
al new M-functions for their implementation. In order to carry a consistent
theme, most of the examples in this chapter are related to image enhancement.
This is a good way to introduce spatial processing because enhancement is
highly intuitive and appealing, especially to beginners in the field. As you will
see throughout the book, however, these techniques are general in scope and
have uses in numerous other branches of digital image processing.

 3.1	 Background

As noted in the preceding paragraph, spatial domain techniques operate di-
rectly on the pixels of an image. The spatial domain processes discussed in this
chapter are denoted by the expression

	 g x y T f x y(,) (,)= [] 	

where f x y(,) is the input image, g x y(,) is the output (processed) image, and
T is an operator on f defined over a specified neighborhood about point (,)x y .
In addition, T can operate on a set of images, such as performing the addition
of K images for noise reduction.

 3.2 ■ Background 81

The principal approach for defining spatial neighborhoods about a point (,)x y
is to use a square or rectangular region centered at (,)x y , as in Fig. 3.1. The center
of the region is moved from pixel to pixel starting, say, at the top, left corner,
and, as it moves, it encompasses different neighborhoods. Operator T is applied
at each location (,)x y to yield the output, g, at that location. Only the pixels in the
neighborhood centered at (,)x y are used in computing the value of g at (,)x y .

Most of the remainder of this chapter deals with various implementations
of the preceding equation. Although this equation is simple conceptually, its
computational implementation in MATLAB requires that careful attention be
paid to data classes and value ranges.

 3.2	 Intensity Transformation Functions

The simplest form of the transformation T is when the neighborhood in Fig. 3.1
is of size 1 1* (a single pixel). In this case, the value of g at (,)x y depends only
on the intensity of f at that point, and T becomes an intensity or gray-level
transformation function. These two terms are used interchangeably when deal-
ing with monochrome (i.e., gray-scale) images. When dealing with color images,
the term intensity is used to denote a color image component in certain color
spaces, as described in Chapter 7.

Because the output value depends only on the intensity value at a point, and
not on a neighborhood of points, intensity transformation functions frequently
are written in simplified form as

	 s T r= () 	

where r denotes the intensity of f and s the intensity of g, both at the same
coordinates (,)x y in the images.

y

x

Origin

(x, y)

Image f (x, y)

Figure 3.1
A neighborhood
of size 3 3*
centered at point
(,)x y in an image.

82 Chapter 3 ■ Intensity Transformations and Spatial Filtering

3.2.1	 Functions imadjust and stretchlim
Function imadjust is the basic Image Processing Toolbox function for inten-
sity transformations of gray-scale images. It has the general syntax

g = imadjust(f, [low_in high_in], [low_out high_out], gamma)

As Fig. 3.2 illustrates, this function maps the intensity values in image f to
new values in g, such that values between low_in and high_in map to values
between low_out and high_out. Values below low_in and above high_in
are clipped; that is, values below low_in map to low_out, and those above
high_in map to high_out. The input image can be of class uint8, uint16,
int16, single, or double, and the output image has the same class as the in-
put. All inputs to function imadjust, other than f and gamma, are specified as
values between 0 and 1, independently of the class of f. If, for example, f is of
class uint8, imadjust multiplies the values supplied by 255 to determine the
actual values to use. Using the empty matrix ([]) for [low_in high_in] or
for [low_out high_out] results in the default values [0 1]. If high_out is
less than low_out, the output intensity is reversed.

Parameter gamma specifies the shape of the curve that maps the intensity
values in f to create g. If gamma is less than 1, the mapping is weighted toward
higher (brighter) output values, as in Fig. 3.2(a). If gamma is greater than 1, the
mapping is weighted toward lower (darker) output values. If it is omitted from
the function argument, gamma defaults to 1 (linear mapping).

■ Figure 3.3(a) is a digital mammogram image, f, showing a small lesion, and
Fig. 3.3(b) is the negative image, obtained using the command

>> g1 = imadjust(f, [0 1], [1 0]);

This process, which is the digital equivalent of obtaining a photographic nega-
tive, is particularly useful for enhancing white or gray detail embedded in a
large, predominantly dark region. Note, for example, how much easier it is to
analyze the breast tissue in Fig. 3.3(b). The negative of an image can be ob-
tained also with toolbox function imcomplement:

imadjust

Recall from the
discussion in Section 2.7
that function mat2gray
can be used for
converting an image to
class double and scaling
its intensities to the
range [0, 1],
independently of the
class of the input image.

Example 3.1:
Using function
imadjust.

low_in high_in

low_out

high_out

low_in high_inlow_in high_in

gamma  1 gamma  1 gamma  1

a b c
Figure 3.2
The various
mappings
available in
function
imadjust.

 3.2 ■ Background 83

g = imcomplement(f)

Figure 3.3(c) is the result of using the command

>> g2 = imadjust(f, [0.5 0.75], [0 1]);

which expands the gray scale interval between 0.5 and 0.75 to the full [0, 1]
range. This type of processing is useful for highlighting an intensity band of
interest. Finally, using the command

>> g3 = imadjust(f, [], [], 2);

imcomplement

d
a b

e f
c

Figure 3.3 (a) Original digital mammogram. (b) Negative image. (c) Result of expanding the intensities in
the range [0.5, 0.75]. (d) Result of enhancing the image with gamma = 2. (e) and (f) Results of using func-
tion stretchlim as an automatic input into function imadjust. (Original image courtesy of G. E. Medical
Systems.)

84 Chapter 3 ■ Intensity Transformations and Spatial Filtering

produced a result similar to (but with more gray tones than) Fig. 3.3(c) by com-
pressing the low end and expanding the high end of the gray scale [Fig. 3.3(d)].	

Sometimes, it is of interest to be able to use function imadjust “automati-
cally,” without having to be concerned about the low and high parameters dis-
cussed above. Function stretchlim is useful in that regard; its basic syntax is

Low_High = stretchlim(f)

where Low_High is a two-element vector of a lower and upper limit that can
be used to achieve contrast stretching (see the following section for a definition
of this term). By default, values in Low_High specify the intensity levels that
saturate the bottom and top 1% of all pixel values in f. The result is used in
vector [low_in high_in] in function imadjust, as follows:

>> g = imadjust(f, stretchlim(f), []);

Figure 3.3(e) shows the result of performing this operation on Fig. 3.3(a). Ob-
serve the increase in contrast. Similarly, Fig. 3.3(f) was obtained using the com-
mand

>> g = imadjust(f, stretchlim(f), [1 0]);

As you can see by comparing Figs. 3.3(b) and (f), this operation enhanced the
contrast of the negative image.	 ■

A slightly more general syntax for stretchlim is

Low_High = stretchlim(f, tol)

where tol is a two-element vector [low_frac high_frac] that specifies the
fraction of the image to saturate at low and high pixel values.

If tol is a scalar, low_frac = tol, and high_frac = 1 − low_frac; this
saturates equal fractions at low and high pixel values. If you omit it from the
argument, tol defaults to [0.01 0.99], giving a saturation level of 2%. If you
choose tol = 0, then Low_High = [min(f(:)) max(f(:))].

3.2.2	 Logarithmic and Contrast-Stretching Transformations
Logarithmic and contrast-stretching transformations are basic tools for
dynamic range manipulation. Logarithm transformations are implemented
using the expression

g = c*log(1 + f)

where c is a constant and f is floating point. The shape of this transformation
is similar to the gamma curve in Fig. 3.2(a) with the low values set at 0 and the

stretchlim

log , log2, and log10
are the base e , base 2,
and base 10 logarithms,
respectively.

log
log2
log10

 3.2 ■ Background 85

high values set to 1 on both scales. Note, however, that the shape of the gamma
curve is variable, whereas the shape of the log function is fixed.

One of the principal uses of the log transformation is to compress dynamic
range. For example, it is not unusual to have a Fourier spectrum (Chapter 4)
with values in the range [,]0 106 or higher. When displayed on a monitor that is
scaled linearly to 8 bits, the high values dominate the display, resulting in lost
visual detail in the lower intensity values in the spectrum. By computing the
log, a dynamic range on the order of, for example, 106, is reduced to approxi-
mately 14 [i.e., log () .e 10 13 86 =], which is much more manageable.

When performing a logarithmic transformation, it is often desirable to bring
the resulting compressed values back to the full range of the display. For 8 bits,
the easiest way to do this in MATLAB is with the statement

>> gs = im2uint8(mat2gray(g));

Using mat2gray brings the values to the range [0, 1] and using im2uint8 brings
them to the range [0, 255], converting the image to class uint8.

The function in Fig. 3.4(a) is called a contrast-stretching transformation func-
tion because it expands a narrow range of input levels into a wide (stretched)
range of output levels. The result is an image of higher contrast. In fact, in the
limiting case shown in Fig. 3.4(b), the output is a binary image. This limiting
function is called a thresholding function, which, as we discuss in Chapter 11, is
a simple tool used for image segmentation. Using the notation introduced at
the beginning of this section, the function in Fig. 3.4(a) has the form

	 s T r
m r E= =()

()
1

1 +
	

where r denotes the intensities of the input image, s the corresponding inten-
sity values in the output image, and E controls the slope of the function. This
equation is implemented in MATLAB for a floating point image as

g = 1./(1 + (m./f).^E)

s  T(r)

T(r)

r
m

D
ar

k

 L
ig

ht

Dark Light

s  T(r)

T(r)

r
m

D
ar

k

 L
ig

ht

Dark Light

a b
Figure 3.4 
(a) Contrast-
stretching
transformation.
(b) Thresholding
transformation.

86 Chapter 3 ■ Intensity Transformations and Spatial Filtering

Because the limiting value of g is 1, output values cannot exceed the range
[0, 1] when working with this type of transformation. The shape in Fig. 3.4(a)
was obtained with E = 20.

■ Figure 3.5(a) is a Fourier spectrum with values in the range 0 to 106,
displayed on a linearly scaled, 8-bit display system. Figure 3.5(b) shows the
result obtained using the commands

>> g = im2uint8(mat2gray(log(1 + double(f))));
>> imshow(g)

The visual improvement of g over the original image is evident.	 ■

3.2.3 Specifying Arbitrary Intensity Transformations
Suppose that it is necessary to transform the intensities of an image using a
specified transformation function. Let T denote a column vector containing
the values of the transformation function. For example, in the case of an 8-bit
image, T(1) is the value to which intensity 0 in the input image is mapped,
T(2) is the value to which 1 is mapped, and so on, with T(256) being the value
to which intensity 255 is mapped.

Programming is simplified considerably if we express the input and output
images in floating point format, with values in the range [0 1]. This means
that all elements of column vector T must be floating-point numbers in that
same range. A simple way to implement intensity mappings is to use function
interp1 which, for this particular application, has the syntax

g = interp1(z, T, f)

where f is the input image, g is the output image, T is the column vector just ex-
plained, and z is a column vector of the same length as T, formed as follows:

Example 3.2:
Using a log
transformation to
reduce dynamic
range.

interp1

a b
Figure 3.5 
(a) A Fourier
spectrum.
(b) Result of
using a log
transformation.

 3.2 ■ Background 87

z = linspace(0, 1, numel(T))';

For a pixel value in f, interp1 first finds that value in the abscissa (z). It
then finds (interpolates)† the corresponding value in T and outputs the inter-
polated value to g in the corresponding pixel location. For example, suppose
that T is the negative transformation, T = [1 0]'. Then, because T only has
two elements, z = [0 1]'. Suppose that a pixel in f has the value 0.75. The
corresponding pixel in g would be assigned the value 0.25. This process is noth-
ing more than the mapping from input to output intensities illustrated in Fig.
3.4(a), but using an arbitrary transformation function T r(). Interpolation is
required because we only have a given number of discrete points for T, while
r can have any value in the range [0 1].

3.2.4	 Some Utility M-Functions for Intensity Transformations
In this section we develop two custom M-functions that incorporate various
aspects of the intensity transformations introduced in the previous three sec-
tions. We show the details of the code for one of them to illustrate error check-
ing, to introduce ways in which MATLAB functions can be formulated so that
they can handle a variable number of inputs and/or outputs, and to show typi-
cal code formats used throughout the book. From this point on, detailed code
of new M-functions is included in our discussions only when the purpose is to
explain specific programming constructs, to illustrate the use of a new MAT-
LAB or Image Processing Toolbox function, or to review concepts introduced
earlier. Otherwise, only the syntax of the function is explained, and its code is
included in Appendix C. Also, in order to focus on the basic structure of the
functions developed in the remainder of the book, this is the last section in
which we show extensive use of error checking. The procedures that follow are
typical of how error handling is programmed in MATLAB.

Handling a Variable Number of Inputs and/or Outputs

To check the number of arguments input into an M-function we use function
nargin,

n = nargin

which returns the actual number of arguments input into the M-function. Simi-
larly, function nargout is used in connection with the outputs of an M-function.
The syntax is

n = nargout

See Section 2.8.1 regard-
ing function linspace.

nargin

nargout

† Because interp1 provides interpolated values at discrete points, this function sometimes is interpreted
as performing lookup table operations. In fact, MATLAB documentation refers to interp1 parentheti-
cally as a table lookup function. We use a multidimensional version of this function for just that purpose in
approxfcn, a custom function developed in Section 3.6.4 for fuzzy image processing.

88 Chapter 3 ■ Intensity Transformations and Spatial Filtering

For example, suppose that we execute the following hypothetical M-function
at the prompt:

>> T = testhv(4, 5);

Use of nargin within the body of this function would return a 2, while use of
nargout would return a 1.

Function nargchk can be used in the body of an M-function to check if the
correct number of arguments was passed. The syntax is

msg = nargchk(low, high, number)

This function returns the message Not enough input arguments if number is
less than low or Too many input arguments if number is greater than high. If
number is between low and high (inclusive), nargchk returns an empty matrix.
A frequent use of function nargchk is to stop execution via the error func-
tion if the incorrect number of arguments is input. The number of actual input
arguments is determined by the nargin function. For example, consider the
following code fragment:

function G = testhv2(x, y, z). . .
error(nargchk(2, 3, nargin));. . .

Typing

>> testhv2(6);

which only has one input argument would produce the error

Not enough input arguments.

and execution would terminate.
It is useful to be able to write functions in which the number of input and/

or output arguments is variable. For this, we use the variables varargin and
varargout. In the declaration, varargin and varargout must be lowercase.
For example,

function [m, n] = testhv3(varargin)

accepts a variable number of inputs into function testhv3.m, and

function [varargout] = testhv4(m, n, p)

returns a variable number of outputs from function testhv4. If function tes-
thv3 had, say, one fixed input argument, x, followed by a variable number of
input arguments, then

nargchk

varargin
varargout

 3.2 ■ Background 89

function [m, n] = testhv3(x, varargin)

would cause varargin to start with the second input argument supplied by the
user when the function is called. Similar comments apply to varargout. It is
acceptable to have a function in which both the number of input and output
arguments is variable.

When varargin is used as the input argument of a function, MATLAB
sets it to a cell array (see Section 2.10.7) that contains the arguments pro-
vided by the user. Because varargin is a cell array, an important aspect of this
arrangement is that the call to the function can contain a mixed set of inputs.
For example, assuming that the code of our hypothetical function testhv3
is equipped to handle it, a perfectly acceptable syntax having a mixed set of
inputs could be

>> [m, n] = testhv3(f, [0 0.5 1.5], A, 'label');

where f is an image, the next argument is a row vector of length 3, A is a matrix,
and 'label' is a character string. This is a powerful feature that can be used
to simplify the structure of functions requiring a variety of different inputs.
Similar comments apply to varargout.

Another M-Function for Intensity Transformations

In this section we develop a function that computes the following transforma-
tion functions: negative, log, gamma and contrast stretching. These transforma-
tions were selected because we will need them later, and also to illustrate the
mechanics involved in writing an M-function for intensity transformations. In
writing this function we use function tofloat,

[g, revertclass] = tofloat(f)

introduced in Section 2.7. Recall from that discussion that this function con-
verts an image of class logical, uint8, uint16, or int16 to class single,
applying the appropriate scale factor. If f is of class double or single, then
g = f; also, recall that revertclass is a function handle that can be used to
covert the output back to the same class as f.

Note in the following M-function, which we call intrans, how function
options are formatted in the Help section of the code, how a variable number
of inputs is handled, how error checking is interleaved in the code, and how
the class of the output image is matched to the class of the input. Keep in mind
when studying the following code that varargin is a cell array, so its elements
are selected by using curly braces.

function g = intrans(f, method, varargin)
%INTRANS Performs intensity (gray-level) transformations.
% G = INTRANS(F, 'neg') computes the negative of input image F.
%
% G = INTRANS(F, 'log', C, CLASS) computes C*log(1 + F) and

intrans

90 Chapter 3 ■ Intensity Transformations and Spatial Filtering

% multiplies the result by (positive) constant C. If the last two
% parameters are omitted, C defaults to 1. Because the log is used
% frequently to display Fourier spectra, parameter CLASS offers
% the option to specify the class of the output as 'uint8' or
% 'uint16'. If parameter CLASS is omitted, the output is of the
% same class as the input.
%
% G = INTRANS(F, 'gamma', GAM) performs a gamma transformation on
% the input image using parameter GAM (a required input).
%
% G = INTRANS(F, 'stretch', M, E) computes a contrast-stretching
% transformation using the expression 1./(1 + (M./F).^E).
% Parameter M must be in the range [0, 1]. The default value for
% M is mean2(tofloat(F)), and the default value for E is 4.
%
% G = INTRANS(F, 'specified', TXFUN) performs the intensity
% transformation s = TXFUN(r) where r are input intensities, s are
% output intensities, and TXFUN is an intensity transformation
% (mapping) function, expressed as a vector with values in the
% range [0, 1]. TXFUN must have at least two values.
%
% For the 'neg', 'gamma', 'stretch' and 'specified'
% transformations, floating-point input images whose values are
% outside the range [0, 1] are scaled first using MAT2GRAY. Other
% images are converted to floating point using TOFLOAT. For the
% 'log' transformation,floating-point images are transformed
% without being scaled; other images are converted to floating
% point first using TOFLOAT.
%
% The output is of the same class as the input, except if a
% different class is specified for the 'log' option.

% Verify the correct number of inputs.
error(nargchk(2, 4, nargin))

if strcmp(method, 'log')
 % The log transform handles image classes differently than the
 % other transforms, so let the logTransform function handle that
 % and then return.
 g = logTransform(f, varargin{:});
 return;
end

% If f is floating point, check to see if it is in the range [0 1].
% If it is not, force it to be using function mat2gray.
if isfloat(f) && (max(f(:)) > 1 || min(f(:)) < 0)
 f = mat2gray(f);
end
[f, revertclass] = tofloat(f); %Store class of f for use later.

% Perform the intensity transformation specified.

 3.2 ■ Background 91

switch method
case 'neg'
 g = imcomplement(f);

case 'gamma'
 g = gammaTransform(f, varargin{:});

case 'stretch'
 g = stretchTransform(f, varargin{:});

case 'specified'
 g = spcfiedTransform(f, varargin{:});

otherwise
 error('Unknown enhancement method.')
end

% Convert to the class of the input image.
g = revertclass(g);

%--%
function g = gammaTransform(f, gamma)
g = imadjust(f, [], [], gamma);

%--%
function g = stretchTransform(f, varargin)
if isempty(varargin)
 % Use defaults.
 m = mean2(f);
 E = 4.0;
elseif length(varargin) == 2
 m = varargin{1};
 E = varargin{2};
else
 error('Incorrect number of inputs for the stretch method.')
end
g = 1./(1 + (m./f).^E);

%--%
function g = spcfiedTransform(f, txfun)
% f is floating point with values in the range [0 1].
txfun = txfun(:); % Force it to be a column vector.
if any(txfun) > 1 || any(txfun) <= 0
 error('All elements of txfun must be in the range [0 1].')
end
T = txfun;
X = linspace(0, 1, numel(T))';
g = interp1(X, T, f);

%--%
function g = logTransform(f, varargin)

92 Chapter 3 ■ Intensity Transformations and Spatial Filtering

[f, revertclass] = tofloat(f);
if numel(varargin) >= 2
 if strcmp(varargin{2}, 'uint8')
 revertclass = @im2uint8;
 elseif strcmp(varargin{2}, 'uint16')
 revertclass = @im2uint16;
 else
 error('Unsupported CLASS option for ''log'' method.')
 end
end
if numel(varargin) < 1
 % Set default for C.
 C = 1;
else
 C = varargin{1};
end
g = C * (log(1 + f));
g = revertclass(g);	

■  As an illustration of function intrans, consider the image in Fig. 3.6(a),
which is an ideal candidate for contrast stretching to enhance the skeletal struc-
ture. The result in Fig. 3.6(b) was obtained with the following call to intrans:

>> g = intrans(f, 'stretch', mean2(tofloat(f)), 0.9);
>> figure, imshow(g)

Note how function mean2 was used to compute the mean value of f directly
inside the function call. The resulting value was used for m. Image f was con-
verted to floating point using tofloat in order to scale its values to the range
[0, 1] so that the mean would also be in this range, as required for input m. The
value of E was determined interactively.	 ■

An M-Function for Intensity Scaling

When working with images, computations that result in pixel values that span a
wide negative to positive range are common. While this presents no problems
during intermediate computations, it does become an issue when we want to
use an 8-bit or 16-bit format for saving or viewing an image, in which case it
usually is desirable to scale the image to the full, maximum range, [0, 255] or
[0, 65535]. The following custom M-function, which we call gscale, accom-
plishes this. In addition, the function can map the output levels to a specified
range. The code for this function does not include any new concepts so we do
not include it here. See Appendix C for the listing.

The syntax of function gscale is

g = gscale(f, method, low, high)

Example 3.3:
Illustration of
function intrans.

gscale

 3.3 ■ Histogram Processing and Function Plotting 93

where f is the image to be scaled. Valid values for method are 'full8' (the
default), which scales the output to the full range [0, 255], and 'full16', which
scales the output to the full range [0, 65535]. If included, parameters low and
high are ignored in these two conversions. A third valid value of method is
'minmax', in which case parameters low and high, both in the range [0, 1], must
be provided. If 'minmax' is selected, the levels are mapped to the range [low,
high]. Although these values are specified in the range [0, 1], the program
performs the proper scaling, depending on the class of the input, and then
converts the output to the same class as the input. For example, if f is of class
uint8 and we specify 'minmax' with the range [0, 0.5], the output also will be
of class uint8, with values in the range [0, 128]. If f is floating point and its
range of values is outside the range [0, 1], the program converts it to this range
before proceeding. Function gscale is used in numerous places throughout
the book.

 3.3	 Histogram Processing and Function Plotting

Intensity transformation functions based on information extracted from image
intensity histograms play a central role in image processing, in areas such as
enhancement, compression, segmentation, and description. The focus of this
section is on obtaining, plotting, and using histograms for image enhancement.
Other applications of histograms are discussed in later chapters.

See Section 4.5.3 for a
discussion of 2-D plotting
techniques.

a b
Figure 3.6 
(a) Bone scan
image. (b) Image
enhanced using a
contrast-stretch-
ing transforma-
tion. (Original
image courtesy
of G. E. Medical
Systems.)

94 Chapter 3 ■ Intensity Transformations and Spatial Filtering

3.3.1	 Generating and Plotting Image Histograms
The histogram of a digital image with L total possible intensity levels in the
range [0, G] is defined as the discrete function

	 h r nk k() = 	

where rk is the kth intensity level in the interval [0, G] and nk is the number of
pixels in the image whose intensity level is rk. The value of G is 255 for images of
class uint8, 65535 for images of class uint16, and 1.0 for floating point images.
Note that G L= - 1 for images of class uint8 and uint16.

Sometimes it is necessary to work with normalized histograms, obtained
simply by dividing all elements of h rk() by the total number of pixels in the
image, which we denote by n:

	
p r

h r
n

n
n

k
k

k

()
()=

=
	

where, for integer images, k L= 0 1 2 1, , , ,… - . From basic probability, we rec-
ognize p rk() as an estimate of the probability of occurrence of intensity level rk.

The core function in the toolbox for dealing with image histograms is imhist,
with the basic syntax:

h = imhist(f, b)

where f is the input image, h is its histogram, and b is the number of bins used
in forming the histogram (if b is not included in the argument, b = 256 is used
by default). A bin is simply a subdivision of the intensity scale. For example, if
we are working with uint8 images and we let b = 2, then the intensity scale is
subdivided into two ranges: 0 to 127 and 128 to 255. The resulting histogram
will have two values: h(1), equal to the number of pixels in the image with
values in the interval [0, 127] and h(2), equal to the number of pixels with
values in the interval [128, 255]. We obtain the normalized histogram by using
the expression

p = imhist(f, b)/numel(f)

Recall from Section 2.10.3 that function numel(f) gives the number of
elements in array f (i.e., the number of pixels in the image).

■ Consider the image, f, from Fig. 3.3(a). The simplest way to plot its histo-
gram on the screen is to use imhist with no output specified:

>> imhist(f);

imhist

Example 3.4:
Computing and
plotting image
histograms.

 3.3 ■ Histogram Processing and Function Plotting 95

Figure 3.7(a) shows the result. This is the histogram display default in the tool-
box. However, there are many other ways to plot a histogram, and we take
this opportunity to explain some of the plotting options in MATLAB that are
representative of those used in image processing applications.

Histograms can be plotted also using bar graphs. For this purpose we can
use the function

bar(horz, z, width)

where z is a row vector containing the points to be plotted, horz is a vector of
the same dimension as z that contains the increments of the horizontal scale,
and width is a number between 0 and 1. In other words, the values of horz
give the horizontal increments and the values of z are the corresponding verti-
cal values. If horz is omitted, the horizontal axis is divided in units from 0 to
length(z). When width is 1, the bars touch; when it is 0, the bars are vertical
lines. The default value is 0.8. When plotting a bar graph, it is customary to
reduce the resolution of the horizontal axis by dividing it into bands.

The following commands produce a bar graph, with the horizontal axis
divided into groups of approximately 10 levels:

>> h = imhist(f, 25);
>> horz = linspace(0, 255, 25);

bar

0 50 100 150 200 250
0

20000

40000

60000

0

5000

10000

15000

0 50 100 150 200 250

0 50 100 150 200 250
0

20000

40000

60000

0 50 100 150 200 250
0

5000

10000

15000

c
a b

d
Figure 3.7  Various
ways to plot an
image histogram.
(a) imhist,
(b) bar,
(c) stem,
(d) plot.

96 Chapter 3 ■ Intensity Transformations and Spatial Filtering

>> bar(horz, h)
>> axis([0 255 0 60000])
>> set(gca, 'xtick', 0:50:255)
>> set(gca, 'ytick', 0:20000:60000)

Figure 3.7(b) shows the result. The narrow peak located at the high end of the
intensity scale in Fig. 3.7(a) is lower in the bar graph because larger horizontal
increments were used in that graph. The vertical scale spans a wider range of
values than for the full histogram in Fig. 3.7(a) because the height of each bar
is determined by all pixels in a range, rather than by all pixels with a single
value.

The fourth statement in the preceding code was used to expand the lower
range of the vertical axis for visual analysis, and to set the horizontal axis to the
same range as in Fig. 3.7. One of the axis function syntax forms is

axis([horzmin horzmax vertmin vertmax])

which sets the minimum and maximum values in the horizontal and vertical
axes. In the last two statements, gca means “get current axis” (i.e., the axes of
the figure last displayed), and xtick and ytick set the horizontal and vertical
axes ticks in the intervals shown. Another syntax used frequently is

axis tight

which sets the axis limits to the range of the data.
Axis labels can be added to the horizontal and vertical axes of a graph using

the functions

xlabel('text string', 'fontsize', size)
ylabel('text string', 'fontsize', size)

where size is the font size in points. Text can be added to the body of the fig-
ure by using function text, as follows:

text(xloc, yloc, 'text string', 'fontsize', size)

where xloc and yloc define the location where text starts. Use of these three
functions is illustrated in Example 3.4. It is important to note that functions
that set axis values and labels are used after the function has been plotted.

A title can be added to a plot using function title, whose basic syntax is

title('titlestring')

where titlestring is the string of characters that will appear on the title,
centered above the plot.

A stem graph is similar to a bar graph. The syntax is

stem(horz, z, 'LineSpec', 'fill')

where z is row vector containing the points to be plotted, and horz is as

set
gca

xlabel
ylabel

text

title

stem

axis ij places the origin
of the axis system on
the top left. This is the
default is when
superimposing axes on
images. As we show in
Example 5.12, sometimes
it is useful to have the
origin on the bottom left.
Using axis xy does that.

axis
axis ij
axis xy

 3.3 ■ Histogram Processing and Function Plotting 97

described for function bar. If horz is omitted, the horizontal axis is divided in
units from 0 to length(z), as before.

The argument,

LineSpec

is a triplet of values from Table 3.1. For example, stem(horz, h, 'r−−p')
produces a stem plot where the lines and markers are red, the lines are dashed,
and the markers are five-point stars. If fill is used, the marker is filled with
the color specified in the first element of the triplet. The default color is blue,
the line default is solid, and the default marker is a circle. The stem graph
in Fig. 3.7(c) was obtained using the statements

>> h = imhist(f, 25);
>> horz = linspace(0, 255, 25);
>> stem(horz, h, 'fill')
>> axis([0 255 0 60000])
>> set(gca, 'xtick', [0:50:255])
>> set(gca, 'ytick', [0:20000:60000])

Next, we consider function plot, which plots a set of points by linking them
with straight lines. The syntax is

Color Specifiers Line Specifiers Marker Specifiers

Symbol Color Symbol Line Style Symbol Marker

k Black − Solid + Plus sign

w White −− Dashed o Circle

r Red : Dotted * Asterisk

g Green −. Dash-dot . Point

b Blue x Cross

c Cyan s Square

y Yellow d Diamond

m Magenta ^ Upward-pointing
triangle

v Downward-pointing
triangle

> Right-pointing
triangle

< Left-pointing
triangle

p Pentagram
(five-point star)

h Hexagram
(six-point star)

Table 3.1
Color, line, and
marker specifiers
for use in
functions stem
and plot.

98 Chapter 3 ■ Intensity Transformations and Spatial Filtering

plot(horz, z, 'LineSpec')

where the arguments are as defined previously for stem plots. As in stem, the
attributes in plot are specified as a triplet. The defaults for plot are solid blue
lines with no markers. If a triplet is specified in which the middle value is blank
(or omitted), no lines are plotted. As before, if horz is omitted, the horizontal
axis is divided in units from 0 to length(z).

The plot in Fig. 3.7(d) was obtained using the following statements:

>> hc = imhist(f);
>> plot(hc) % Use the default values.
>> axis([0 255 0 15000])
>> set(gca, 'xtick', [0:50:255])
>> set(gca, 'ytick', [0:2000:15000])

Function plot is used frequently to display transformation functions (see
Example 3.5).	 ■

In the preceding discussion axis limits and tick marks were set manually. To
set the limits and ticks automatically, use functions ylim and xlim, which, for
our purposes here, have the syntax forms

ylim('auto')
xlim('auto')

Among other possible variations of the syntax for these two functions (see the
help documentation for details), there is a manual option, given by

ylim([ymin ymax])
xlim([xmin xmax])

which allows manual specification of the limits. If the limits are specified for
only one axis, the limits on the other axis are set to 'auto' by default. We use
these functions in the following section. Typing hold on at the prompt retains
the current plot and certain axes properties so that subsequent graphing com-
mands add to the existing graph.

Another plotting function that is particularly useful when dealing with func-
tion handles (see Sections 2.10.4 and 2.10.5) is function fplot. The basic syn-
tax is

fplot(fhandle, limits, 'LineSpec')

where fhandle is a function handle, and limits is a vector specifying the
x-axis limits, [xmin xmax]. You will recall from the discussion of function
timeit in Section 2.10.5 that using function handles allows the syntax of the
underlying function to be independent of the parameters of the function to be
processed (plotted in this case). For example, to plot the hyperbolic tangent
function, tanh, in the range [−2 2] using a dotted line we write

plot

See the plot help page
for additional options
available for this func-
tion.

Plot defaults are useful
for superimposing
markers on an image. For
example, to place green
asterisks at points given
in vectors x and y in an
image, f, we use:

>> imshow(f)
>> hold on
>> plot(y(:), x(:), 'g*')

where the order of y(:)
and x(:) is reversed
to compensate for the
fact that image and plot
coordinate systems are
different in MATLAB.
Command hold on is
explained below.

ylim
xlim

hold on

fplot

See the help page for
fplot for a discussion of
additional syntax forms.

 3.3 ■ Histogram Processing and Function Plotting 99

>> fhandle = @tanh;
>> fplot(fhandle, [−2 2], ':')

Function fplot uses an automatic, adaptive increment control scheme to
produce a representative graph, concentrating more detail where the rate of
change is the greatest. Thus, only the plotting limits have to be specified by the
user. While this simplifies plotting tasks, the automatic feature can at times
yield unexpected results. For example, if a function is initially 0 for an appre-
ciable interval, it is possible for fplot to assume that the function is zero and
just plot 0 for the entire interval. In cases such as this, you can specify a mini-
mum number of points for the function to plot. The syntax is

fplot(fhandle, limits, 'LineSpec', n)

Specifying n >= 1 forces fplot to plot the function with a minimum of n + 1
points, using a step size of (1/n)*(upper_lim − lower_lim), where upper
and lower refer to the upper and lower limits specified in limits.

3.3.2	 Histogram Equalization
Assume for a moment that intensity levels are continuous quantities normal-
ized to the range [0, 1], and let p rr() denote the probability density function
(PDF) of the intensity levels in a given image, where the subscript is used for
differentiating between the PDFs of the input and output images. Suppose that
we perform the following transformation on the input levels to obtain output
(processed) intensity levels, s,

	 s T r p d
r

r= =() ()
02 w w 	

where w is a dummy variable of integration. It can be shown (Gonzalez and
Woods [2008]) that the probability density function of the output levels is uni-
form; that is,

	 p s
s

s() =




1 0 1for

0 otherwise

… …
	

In other words, the preceding transformation generates an image whose inten-
sity levels are equally likely, and, in addition, cover the entire range [0, 1]. The
net result of this intensity-level equalization process is an image with increased
dynamic range, which will tend to have higher contrast. Note that the transfor-
mation function is really nothing more than the cumulative distribution func-
tion (CDF).

When dealing with discrete quantities we work with histograms and call
the preceding technique histogram equalization, although, in general, the his-
togram of the processed image will not be uniform, due to the discrete nature
of the variables. With reference to the discussion in Section 3.3.1, let p rr j() for
j L= 0 1 2 1, , , ,… - , denote the histogram associated with the intensity levels

100 Chapter 3 ■ Intensity Transformations and Spatial Filtering

of a given image, and recall that the values in a normalized histogram are
approximations to the probability of occurrence of each intensity level in the
image. For discrete quantities we work with summations, and the equaliza-
tion transformation becomes

	

s T r

p r

n

n

k k

r j
j

k

j

j

k

=

=

=

=

=

∑

∑

()

()
0

0

	

for k L= 0 1 2 1, , , ,… - , where sk is the intensity value in the output (pro-
cessed) image corresponding to value rk in the input image.

Histogram equalization is implemented in the toolbox by function histeq,
which has the syntax

g = histeq(f, nlev)

where f is the input image and nlev is the number of intensity levels specified
for the output image. If nlev is equal to L (the total number of possible lev-
els in the input image), then histeq implements the transformation function
directly. If nlev is less than L, then histeq attempts to distribute the levels so
that they will approximate a flat histogram. Unlike imhist, the default value
in histeq is nlev = 64. For the most part, we use the maximum possible num-
ber of levels (generally 256) for nlev because this produces a true implemen-
tation of the histogram-equalization method just described.

■ Figure 3.8(a) is an electron microscope image of pollen, magnified approxi-
mately 700 times. In terms of needed enhancement, the most important fea-
tures of this image are that it is dark and has a low dynamic range. These char-
acteristics are evident in the histogram in Fig. 3.8(b), in which the dark nature
of the image causes the histogram to be biased toward the dark end of the gray
scale. The low dynamic range is evident from the fact that the histogram is nar-
row with respect to the entire gray scale. Letting f denote the input image, the
following sequence of steps produced Figs. 3.8(a) through (d):

>> imshow(f); % Fig. 3.8(a).
>> figure, imhist(f) % Fig. 3.8(b).
>> ylim('auto')
>> g = histeq(f, 256);
>> figure, imshow(g) % Fig. 3.8(c).
>> figure, imhist(g) % Fig. 3.8(d).
>> ylim('auto')

The image in Fig. 3.8(c) is the histogram-equalized result. The improve-
ments in average intensity and contrast are evident. These features also are

histeq

Example 3.5:
Histogram
equalization.

 3.3 ■ Histogram Processing and Function Plotting 101

evident in the histogram of this image, shown in Fig. 3.8(d). The increase in
contrast is due to the considerable spread of the histogram over the entire
intensity scale. The increase in overall intensity is due to the fact that the aver-
age intensity level in the histogram of the equalized image is higher (lighter)
than the original. Although the histogram-equalization method just discussed
does not produce a flat histogram, it has the desired characteristic of being able
to increase the dynamic range of the intensity levels in an image.

As noted earlier, the transformation function used in histogram equaliza-
tion is the cumulative sum of normalized histogram values. We can use func-
tion cumsum to obtain the transformation function, as follows:

>> hnorm = imhist(f)./numel(f); % Normalized histogram.
>> cdf = cumsum(hnorm); % CDF.

A plot of cdf, shown in Fig. 3.9, was obtained using the following commands:

cumsum

If A is a vector,
B = cumsum(A) gives the
sum of its elements. If A
is a higher-dimensional
array, then
B = cumsum(A, dim)
gives the sum along the
dimension specified by
dim.

0 50 100 150 200 250

 104

 104

0 50 100 150 200 250

0

2

1

4

3

6

5

7

8

0

2

1

4

3

6

5

7

8

c
a b

d
Figure 3.8
Illustration of
histogram
equalization.
(a) Input image,
and (b) its
histogram.
(c) Histogram-
equalized image,
and (d) its
histogram. The
improvement
between (a) and
(c) is evident.
(Original image
courtesy of Dr.
Roger Heady,
Research School
of Biological
Sciences, Austra-
lian National
University,
Canberra.)

102 Chapter 3 ■ Intensity Transformations and Spatial Filtering

>> x = linspace(0, 1, 256); % Intervals for [0,1] horiz
 % scale.
>> plot(x, cdf)   % Plot cdf vs. x.
>> axis([0 1 0 1]);  % Scale, settings, and labels:
>> set(gca, 'xtick', 0:.2:1)
>> set(gca, 'ytick', 0:.2:1)
>> xlabel('Input intensity values', 'fontsize', 9)
>> ylabel('Output intensity values', 'fontsize', 9)

The text in the body of the graph was inserted using the TextBox and Arrow
commands from the Insert menu in the MATLAB figure window containing
the plot. You can use function annotation to write code that inserts items
such as text boxes and arrows on graphs, but the Insert menu is considerably
easier to use.

You can see by looking at the histograms in Fig. 3.8 that the transformation
function in Fig. 3.9 maps a narrow range of intensity levels in the lower end
of the input intensity scale to the full intensity range in the output image. The
improvement in image contrast is evident by comparing the input and output
images in Fig. 3.8.	 ■

3.3.3	 Histogram Matching (Specification)
Histogram equalization produces a transformation function that is adaptive, in
the sense that it is based on the histogram of a given image. However, once the
transformation function for an image has been computed, it does not change

annotation

See the help page for this
function for details on
how to use it.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Input intensity values

O
ut

pu
t i

nt
en

si
ty

 v
al

ue
s

Transformation function

Figure 3.9
Transformation
function used to
map the inten-
sity values from
the input image
in Fig. 3.7(a) to
the values of the
output image in
Fig. 3.7(c).

 3.3 ■ Histogram Processing and Function Plotting 103

unless the histogram of the image changes. As noted in the previous section,
histogram equalization achieves enhancement by spreading the levels of the
input image over a wider range of the intensity scale. We show in this section
that this does not always lead to a successful result. In particular, it is useful in
some applications to be able to specify the shape of the histogram that we wish
the processed image to have. The method used to generate an image that has a
specified histogram is called histogram matching or histogram specification.

The method is simple in principle. Consider for a moment continuous levels
that are normalized to the interval [0, 1], and let r and z denote the intensity
levels of the input and output images. The input levels have probability den-
sity function p rr() and the output levels have the specified probability density
function p zz(). We know from the discussion in the previous section that he
transformation

	 s T r p d
r

r= =() ()
02 w w 	

results in intensity levels, s, with a uniform probability density function p ss().
Suppose now that we define a variable z with the property

	 H z p d
z

z() ()=
02 w w=s 	

Keep in mind that we are after an image with intensity levels, z, that have the
specified density p zz(). From the preceding two equations, it follows that

	 z H s H T r= = []- -1 1() () 	

We can find T r() from the input image (this is the histogram-equalization
transformation discussed in the previous section), so it follows that we can
use the preceding equation to find the transformed levels z whose density is
the specified p zz() provided that we can find H -1. When working with discrete
variables, we can guarantee that the inverse of H exists if p zk() is a valid his-
togram (i.e., it has unit area and all its values are nonnegative), and none of
its components is zero [i.e., no bin of p zk() is empty]. As in histogram equal-
ization, the discrete implementation of the preceding method only yields an
approximation to the specified histogram.

The toolbox implements histogram matching using the following syntax in
histeq:

g = histeq(f, hspec)

where f is the input image, hspec is the specified histogram (a row vector of
specified values), and g is the output image, whose histogram approximates
the specified histogram, hspec. This vector should contain integer counts cor-
responding to equally spaced bins. A property of histeq is that the histogram
of g generally better matches hspec when length(hspec) is much smaller
than the number of intensity levels in f.

104 Chapter 3 ■ Intensity Transformations and Spatial Filtering

■ Figure 3.10(a) shows an image, f, of the Mars moon, Phobos, and Fig. 3.10(b)
shows its histogram, obtained using imhist(f). The image is dominated by
large, dark areas, resulting in a histogram characterized by a large concentra-
tion of pixels in the dark end of the gray scale. At first glance, one might con-
clude that histogram equalization would be a good approach to enhance this
image, so that details in the dark areas become more visible. However, the
result in Fig. 3.10(c), obtained using the command

>> f1 = histeq(f, 256);

shows that histogram equalization in fact produced an image with a “washed-
out” appearance—not a particularly good result in this case. The reason for
this can be seen by studying the histogram of the equalized image, shown in
Fig. 3.10(d). Here, we see that the intensity levels have been shifted to the
upper one-half of the gray scale, thus giving the image the low-contrast,
washed-out appearance mentioned above. The cause of the shift is the large
concentration of dark components at or near 0 in the original histogram. The
cumulative transformation function obtained from this histogram is steep, thus
mapping the large concentration of pixels in the low end of the gray scale to
the high end of the scale.

One possibility for remedying this situation is to use histogram matching,
with the desired histogram having a lesser concentration of components in the
low end of the gray scale, and maintaining the general shape of the histogram
of the original image. We note from Fig. 3.10(b) that the histogram is basi-
cally bimodal, with one large mode at the origin, and another, smaller, mode at
the high end of the gray scale. These types of histograms can be modeled, for
example, by using multimodal Gaussian functions. The following M-function
computes a bimodal Gaussian function normalized to unit area, so it can be
used as a specified histogram.

function p = twomodegauss(m1, sig1, m2, sig2, A1, A2, k)
%TWOMODEGAUSS Generates a two-mode Gaussian function.
% P = TWOMODEGAUSS(M1, SIG1, M2, SIG2, A1, A2, K) generates a
% two-mode, Gaussian-like function in the interval [0, 1]. P is a
% 256-element vector normalized so that SUM(P) = 1. The mean and
% standard deviation of the modes are (M1, SIG1) and (M2, SIG2),
% respectively. A1 and A2 are the amplitude values of the two
% modes. Since the output is normalized, only the relative values
% of A1 and A2 are important. K is an offset value that raises the
% "floor" of the function. A good set of values to try is M1 =
% 0.15, SIG1 = 0.05, M2 = 0.75, SIG2 = 0.05, A1 = 1, A2 = 0.07,
% and K = 0.002.

c1 = A1 * (1 / ((2 * pi) ^ 0.5) * sig1);
k1 = 2 * (sig1 ^ 2);
c2 = A2 * (1 / ((2 * pi) ^ 0.5) * sig2);
k2 = 2 * (sig2 ^ 2);
z = linspace(0, 1, 256);

Example 3.6:
Histogram
matching.

twomodegauss

 3.3 ■ Histogram Processing and Function Plotting 105

p = k + c1 * exp(−((z − m1) .^ 2) ./ k1) + ...
 c2 * exp(−((z − m2) .^ 2) ./ k2);
p = p ./ sum(p(:));	

The following interactive function accepts inputs from a keyboard and plots
the resulting Gaussian function. Refer to Section 2.10.6 for an explanation of
function input. Note how the limits of the plots are set.

function p = manualhist
%MANUALHIST Generates a two-mode histogram interactively.
% P = MANUALHIST generates a two-mode histogram using function
% TWOMODEGAUSS(m1, sig1, m2, sig2, A1, A2, k). m1 and m2 are the
% means of the two modes and must be in the range [0,1]. SIG1 and
% SIG2 are the standard deviations of the two modes. A1 and A2 are
% amplitude values, and k is an offset value that raises the floor

manualhist

0 50 100 150 200 250

0

1

2

3

4

5

6

 104

0 50 100 150 200 250

0

1

2

3

4

5

6

 104

c
a b

d
Figure 3.10 
(a) Image of
the Mars moon
Phobos.
(b) Histogram.
(c) Histogram-
equalized image.
(d) Histogram
of (c).
(Original image
 courtesy of
NASA.)

106 Chapter 3 ■ Intensity Transformations and Spatial Filtering

% of the the histogram. The number of elements in the histogram
% vector P is 256 and sum(P) is normalized to 1. MANUALHIST
% repeatedly prompts for the parameters and plots the resulting
% histogram until the user types an 'x' to quit, and then it
% returns the last histogram computed.
%
% A good set of starting values is: (0.15, 0.05, 0.75, 0.05, 1,
% 0.07, 0.002).

% Initialize.
repeats = true;
quitnow = 'x';

% Compute a default histogram in case the user quits before
% estimating at least one histogram.
p = twomodegauss(0.15, 0.05, 0.75, 0.05, 1, 0.07, 0.002);

% Cycle until an x is input.
while repeats
 s = input('Enter m1, sig1, m2, sig2, A1, A2, k OR x to quit:',...
 's');
 if strcmp(s, quitnow)
 break
 end

 % Convert the input string to a vector of numerical values and
 % verify the number of inputs.
 v = str2num(s);
 if numel(v) ~= 7
 disp('Incorrect number of inputs.')
 continue
 end

 p = twomodegauss(v(1), v(2), v(3), v(4), v(5), v(6), v(7));
 % Start a new figure and scale the axes. Specifying only xlim
 % leaves ylim on auto.
 figure, plot(p)
 xlim([0 255])
end	

Because the problem with histogram equalization in this example is due
primarily to a large concentration of pixels in the original image with levels
near 0, a reasonable approach is to modify the histogram of that image so
that it does not have this property. Figure 3.11(a) shows a plot of a function
(obtained with program manualhist) that preserves the general shape of the
original histogram, but has a smoother transition of levels in the dark region of
the intensity scale. The output of the program, p, consists of 256 equally spaced
points from this function and is the desired specified histogram. An image with
the specified histogram was generated using the command

 3.3 ■ Histogram Processing and Function Plotting 107

>> g = histeq(f, p);

Figure 3.11(b) shows the result. The improvement over the histogram-
equalized result in Fig. 3.10(c) is evident. Note that the specified histogram rep-
resents a rather modest change from the original histogram. This is all that was
required to obtain a significant improvement in enhancement. The histogram
of Fig. 3.11(b) is shown in Fig. 3.11(c). The most distinguishing feature of this
histogram is how its low end has been moved closer to a lighter region of the
gray scale, and thus closer to the specified shape. Note, however, that the shift
to the right was not as extreme as the shift in the histogram in Fig. 3.10(d),
which corresponds to the poorly enhanced image of Fig. 3.10(c).	 ■

3.3.4	 Function adapthisteq
This toolbox function performs so-called contrast-limited adaptive histogram
equalization (CLAHE). Unlike the methods discussed in the previous two sec-
tions, which operate on an entire image, this approach consists of processing
small regions of the image (called tiles) using histogram specification for each
tile individually. Neighboring tiles are then combined using bilinear interpo-
lation to eliminate artificially induced boundaries. The contrast, especially in

See Section 6.6 regarding
interpolation.

c
a b

Figure 3.11 
(a) Specified
histogram.
(b) Result of
enhancement by
histogram
matching.
(c) Histogram of
(b).

0 50 100 150 200 250

0

1

2

3

4

5

6

 104

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

108 Chapter 3 ■ Intensity Transformations and Spatial Filtering

areas of homogeneous intensity, can be limited to avoid amplifying noise. The
syntax for adapthisteq is

g = adapthisteq(f, param1, val1, param2, val2, ...)

where f is the input image, g is the output image, and the param/val pairs are
as listed in Table 3.2.

■ Figure 3.12(a) is the same as Fig. 3.10(a) and Fig. 3.12(b) is the result of using
all the default settings in function adapthisteq:

>> g1 = adapthisteq(f);

Although this result shows a slight increase in detail, significant portions of the
image still are in the shadows. Fig. 3.12(c) shows the result of increasing the
size of the tiles to [25 25]:

>> g2 = adapthisteq(f, 'NumTiles', [25 25]);

Sharpness increased slightly, but no new details are visible. Using the com-
mand

adapthisteq

Example 3.7:
Using function
adapthisteq.

Parameter Value

'NumTiles' Two-element vector of positive integers specifying the number of tiles by row and
column, [r c]. Both r and c must be at least 2. The total number of tiles is equal to
r*c. The default is [8 8].

'ClipLimit' Scalar in the range [0 1] that specifies a contrast enhancement limit. Higher numbers
result in more contrast. The default is 0.01.

'NBins' Positive integer scalar specifying the number of bins for the histogram used in build-
ing a contrast enhancing transformation. Higher values result in greater dynamic
range at the cost of slower processing speed. The default is 256.

'Range' A string specifying the range of the output image data:
'original' — Range is limited to the range of the original image,

[min(f(:)) max(f(:))].
'full' — Full range of the output image class is used. For example, for uint8 data,

range is [0 255]. This is the default.

'Distribution' A string specifying the desired histogram shape for the image tiles:
'uniform' — Flat histogram (this is the default).
'rayleigh' — Bell-shaped histogram.
'exponential' — Curved histogram.

(See Section 5.2.2 for the equations for these distributions.

'Alpha' Nonnegative scalar applicable to the Rayleigh and exponential distributions. The
default value is 0.4.

Table 3.2 Parameters and corresponding values for use in function adapthisteq.

 3.4 ■ Spatial Filtering 109

>> g3 = adapthisteq(f, 'NumTiles', [25 25], 'ClipLimit', 0.05);

yielded the result in Fig. 3.12(d). The enhancement in detail in this image is sig-
nificant compared to the previous two results. In fact, comparing Figs. 3.12(d)
and 3.11(b) provides a good example of the advantage that local enhance-
ment can have over global enhancement methods. Generally, the price paid is
additional function complexity. 	 ■

 3.4	 Spatial Filtering

As mentioned in Section 3.1 and illustrated in Fig. 3.1, neighborhood processing
consists of (1) selecting a center point, (,)x y ; (2) performing an operation that
involves only the pixels in a predefined neighborhood about (,)x y ; (3) letting
the result of that operation be the “response” of the process at that point; and
(4) repeating the process for every point in the image. The process of moving
the center point creates new neighborhoods, one for each pixel in the input im-
age. The two principal terms used to identify this operation are neighborhood
processing and spatial filtering, with the second term being more prevalent. As
explained in the following section, if the computations performed on the pixels
of the neighborhoods are linear, the operation is called linear spatial filtering
(the term spatial convolution also used); otherwise it is called nonlinear spatial
filtering.

3.4.1	 Linear Spatial Filtering
The concept of linear filtering has its roots in the use of the Fourier transform
for signal processing in the frequency domain, a topic discussed in detail in
Chapter 4. In the present chapter, we are interested in filtering operations that

a b c d
Figure 3.12 (a) Same as Fig. 3.10(a). (b) Result of using function adapthisteq with the default values.
(c) Result of using this function with parameter NumTiles set to [25 25]. Result of using this number of tiles
and ClipLimit = 0.05.

110 Chapter 3 ■ Intensity Transformations and Spatial Filtering

are performed directly on the pixels of an image. Use of the term linear spatial
filtering differentiates this type of process from frequency domain filtering.

The linear operations of interest in this chapter consist of multiplying each
pixel in the neighborhood by a corresponding coefficient and summing the re-
sults to obtain the response at each point (,)x y . If the neighborhood is of size
m n* , mn coefficients are required. The coefficients are arranged as a matrix,
called a filter, mask, filter mask, kernel, template, or window, with the first three
terms being the most prevalent. For reasons that will become obvious shortly,
the terms convolution filter, convolution mask, or convolution kernel, also are
used.

Figure 3.13 illustrates the mechanics of linear spatial filtering. The process
consists of moving the center of the filter mask, w, from point to point in an
image, f . At each point (,)x y , the response of the filter at that point is the
sum of products of the filter coefficients and the corresponding neighborhood
pixels in the area spanned by the filter mask. For a mask of size m n* , we
assume typically that m a= 2 1+ and n b= 2 1+ where a and b are nonnega-
tive integers. All this says is that our principal focus is on masks of odd sizes,
with the smallest meaningful size being 3 3* . Although it certainly is not a
requirement, working with odd-size masks is more intuitive because they have
an unambiguous center point.

There are two closely related concepts that must be understood clearly when
performing linear spatial filtering. One is correlation; the other is convolution.
Correlation is the process of passing the mask w by the image array f in the
manner described in Fig. 3.13. Mechanically, convolution is the same process,
except that w is rotated by 180° prior to passing it by f . These two concepts are
best explained by some examples.

Figure 3.14(a) shows a one-dimensional function, f, and a mask, w. The ori-
gin of f is assumed to be its leftmost point. To perform the correlation of the
two functions, we move w so that its rightmost point coincides with the origin
of f , as Fig. 3.14(b) shows. Note that there are points between the two func-
tions that do not overlap. The most common way to handle this problem is to
pad f with as many 0s as are necessary to guarantee that there will always be
corresponding points for the full excursion of w past f . This situation is illus-
trated in Fig. 3.14(c).

We are now ready to perform the correlation. The first value of correlation
is the sum of products of the two functions in the position shown in Fig. 3.14(c).
The sum of products is 0 in this case. Next, we move w one location to the right
and repeat the process [Fig. 3.14(d)]. The sum of products again is 0. After four
shifts [Fig. 3.14(e)], we encounter the first nonzero value of the correlation,
which is (2)(1) = 2. If we proceed in this manner until w moves completely
past f  [the ending geometry is shown in Fig. 3.14(f)] we would get the result in
Fig. 3.14(g). This set of values is the correlation of w and f . If we had padded
w, aligned the rightmost element of f with the leftmost element of the padded
w, and performed correlation in the manner just explained, the result would
have been different (rotated by 180°), so order of the functions matters in cor-
relation.

 3.4 ■ Spatial Filtering 111

The label 'full' in the correlation in Fig. 3.14(g) is a flag (to be discussed
later) used by the toolbox to indicate correlation using a padded image and
computed in the manner just described. The toolbox provides another option,
denoted by 'same' [Fig. 3.14(h)] that produces a correlation that is of the
same size as f . This computation also uses zero padding, but the starting posi-
tion is with the center point of the mask (the point labeled 3 in w) aligned
with the origin of f . The last computation is with the center point of the mask
aligned with the last point in f .

To perform convolution we rotate w by 180° and place its rightmost point
at the origin of f, as Fig. 3.14(j) shows. We then repeat the sliding/computing

Figure 3.13 
The mechanics of
linear spatial
filtering. The
magnified drawing
shows a 3 3* filter
mask and the
corresponding
image
neighborhood
directly under
it. The image
neighborhood is
shown displaced
out from under
the mask for ease
of readability.

(x1, y) (x1, y1)

(x, y1)
(x, y)

(x, y1)

(x1, y1) (x1, y) (x1, y1)

(x1, y1)

x

Image f

Mask coefficients, showing
coordinate arrangement

Image coordinates under the mask

Mask centered
at an arbitrary

point (x, y)

Image origin

y

w(1, 0) w(1, 1)

w(0, 1) w(0, 0) w(0, 1)

w(1, 1) w(1, 0) w(1, 1)

w(1, 1)

(x, y)

112 Chapter 3 ■ Intensity Transformations and Spatial Filtering

process employed in correlation, as illustrated in Figs. 3.14(k) through (n). The
'full' and 'same' convolution results are shown in Figs. 3.14(o) and (p), re-
spectively.

Function f in Fig. 3.14 is a discrete unit impulse that is 1 at a point and 0
everywhere else. It is evident from the result in Figs. 3.14(o) or (p) that con-
volution with an impulse just “copies” w at the location of the impulse. This
copying property (called sifting) is a fundamental concept in linear system
theory, and it is the reason why one of the functions is always rotated by 180°
in convolution. Note that, unlike correlation, swapping the order of the func-
tions yields the same convolution result. If the function being shifted is sym-
metric, it is evident that convolution and correlation yield the same result.

The preceding concepts extend easily to images, as Fig. 3.15 illustrates. The
origin is at the top, left corner of image f x y(,) (see Fig. 2.1). To perform cor-
relation, we place the bottom, rightmost point of w(,)x y so that it coincides
with the origin of f x y(,) as in Fig. 3.15(c). Note the use of 0 padding for the

Figure 3.14 
Illustration of
one-dimensional
correlation and
convolution.

Correlation Convolution

'full' correlation result

(a) 0 0 0 1 0 0 0 0 1 2 3 2 0
Origin

Starting position alignment

Zero padding

f w

(b) 0 0 0 1 0 0 0 0
1 2 3 2 0

Position after one shift

(c) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 2 3 2 0

(d) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
 1 2 3 2 0

Position after four shifts

(e) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
 1 2 3 2 0

Final position

(f) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
 1 2 3 2 0

(g) 0 0 0 0 2 3 2 1 0 0 0 0

'same' correlation result
(h) 0 0 2 3 2 1 0 0

'full' convolution result

(i)0 0 0 1 0 0 0 0 0 2 3 2 1
Origin f w rotated 180

 0 0 0 1 0 0 0 0
0 2 3 2 1

(j)

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 2 3 2 1

(k)

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
 0 2 3 2 1

(l)

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
 0 2 3 2 1

(m)

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
 0 2 3 2 1

(n)

 0 0 0 1 2 3 2 0 0 0 0 0 (o)

'same' convolution result
 0 1 2 3 2 0 0 0 (p)

 3.4 ■ Spatial Filtering 113

reasons mentioned in the discussion of Fig. 3.14. To perform correlation, we
move w(,)x y in all possible locations so that at least one of its pixels over-
laps a pixel in the original image f x y(,). This 'full' correlation is shown in
Fig. 3.15(d). To obtain the 'same' correlation in Fig. 3.15(e), we require that all
excursions of w(,)x y be such that its center pixel overlaps the original f x y(,).
For convolution, we rotate w(,)x y by 180° and proceed in the same manner
as in correlation [see Figs. 3.15(f) through (h)]. As in the one-dimensional
example discussed earlier, convolution yields the same result independently of
the order of the functions. In correlation the order does matter, a fact that is
made clear in the toolbox by assuming that the filter mask is always the func-
tion that undergoes translation. Note also the important fact in Figs. 3.15(e)
and (h) that the results of spatial correlation and convolution are rotated by
180° with respect to each other. This, of course, is expected because convolu-
tion is nothing more than correlation with a rotated filter mask.

Figure 3.15
Illustration of
two-dimensional
correlation and
convolution. The
0s are shown in
gray to simplify
viewing.

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0 1 2 3
0 0 0 0 0 4 5 6
0 0 0 0 0 7 8 9

Origin of f(x, y)

w(x, y)

Initial position for w

(a)

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Padded f

(b)

1 2 3 0 0 0 0 0 0
4 5 6 0 0 0 0 0 0
7 8 9 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(c)

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 9 8 7 0 0 0
0 0 0 6 5 4 0 0 0
0 0 0 3 2 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

'full' correlation result

(d)

0 0 0 0 0
0 9 8 7 0
0 6 5 4 0
0 3 2 1 0
0 0 0 0 0

'same' correlation result

(e)

Rotated w
9 8 7 0 0 0 0 0 0
6 5 4 0 0 0 0 0 0
3 2 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(f)

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 2 3 0 0 0
0 0 0 4 5 6 0 0 0
0 0 0 7 8 9 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

'full' convolution result

(g)

0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0

'same' convolution result

(h)

114 Chapter 3 ■ Intensity Transformations and Spatial Filtering

Summarizing the preceding discussion in equation form, we have that
the correlation of a filter mask w(,)x y of size m n* with a function f x y(,),
denoted by w(,) (,)x y f x y , is given by the expression

	 w w(,) (,) (,) (,)x y f x y s t f x s y t
t b

b

s a

a

 =
==
∑∑ + +

--

	

This equation is evaluated for all values of the displacement variables x and y so
that all elements of w visit every pixel in f, which we assume has been padded
appropriately. Constants a and b are given by a m= ()- 1 2 and b n= ()- 1 2.
For notational convenience, we assume that m and n are odd integers.

In a similar manner, the convolution of w(,)x y and f x y(,), denoted by
w(,) (,)x y f x y , is given by the expression

	 w w(,) (,) (,) (,)x y f x y s t f x s y t
t b

b

s a

a

 =
==
∑∑ - -

--

	

where the minus signs on the right of the equation flip f (i.e., rotate it by 180°).
Rotating and shifting f instead of w is done to simplify the notation. The result
is the same.† The terms in the summation are the same as for correlation.

The toolbox implements linear spatial filtering using function imfilter,
which has the following syntax:

g = imfilter(f, w, filtering_mode, boundary_options, size_options)

where f is the input image, w is the filter mask, g is the filtered result, and
the other parameters are summarized in Table 3.3. The filtering_mode is
specified as 'corr' for correlation (this is the default) or as 'conv' for con-
volution. The boundary_options deal with the border-padding issue, with the
size of the border being determined by the size of the filter. These options are
explained further in Example 3.8. The size_options are either 'same' or
'full', as explained in Figs. 3.14 and 3.15.

The most common syntax for imfilter is

g = imfilter(f, w, 'replicate')

This syntax is used when implementing standard linear spatial filters in the
toolbox. These filters, which are discussed in Section 3.5.1, are prerotated by
180°, so we can use the correlation default in imfilter (from the discussion of
Fig. 3.15, we know that performing correlation with a rotated filter is the same
as performing convolution with the original filter). If the filter is symmetric
about its center, then both options produce the same result.

imfilter

† Because convolution is commutative, we have that w w(,) (,) (,) (,)x y f x y f x y x y = . This is not true of
correlation, as you can see, for example, by reversing the order of the two functions in Fig. 3.14(a).

128 Chapter 3 ■ Intensity Transformations and Spatial Filtering

 3.6	 Using Fuzzy Techniques for Intensity
	 Transformations and Spatial Filtering

We conclude this chapter with an introduction to fuzzy sets and their applica-
tion to intensity transformations and spatial filtering. We also develop a set of
custom M-functions for implementing the fuzzy methods developed in this
section. As you will see shortly, fuzzy sets provide a framework for incorporat-
ing human knowledge in the solution of problems whose formulation is based
on imprecise concepts.

3.6.1	 Background
A set is a collection of objects (elements) and set theory consists of tools that
deal with operations on and among sets. Central to set theory is the no-
tion of set membership. We are used to dealing with so-called “crisp” sets,
whose membership can be only true or false in the traditional sense of
bivalued Boolean logic, with 1 typically indicating true and 0 indicating false.
For example, let Z denote the set of all people, and suppose that we want to
define a subset, A, of Z, called the “set of young people.” In order to form this
subset, we need to define a membership function that assigns a value of 1 or
0 to every element, z, of Z. Because we are dealing with a bivalued logic, the
membership function defines a threshold at or below which a person is consid-
ered young, and above which a person is considered not young. Figure 3.20(a)
summarizes this concept using an age threshold of 20 years, where mA z()
denotes the membership function just discussed.

We see immediately a difficulty with this formulation: A person 20 years of
age is considered young, but a person whose age is 20 years and 1 second is
not a member of the set of young people. This is a fundamental problem with
crisp sets that limits their use in many practical applications. What we need is
more flexibility in what we mean by “young;” that is, a gradual transition from
young to not young. Figure 3.20(b) shows one possibility. The essential feature
of this function is that it is infinite-valued, thus allowing a continuous transition
between young and not young. This makes it possible to have degrees of “young-
ness.” We can make statements now such as a person being young (upper flat
end of the curve), relatively young (toward the beginning of the ramp), 50%
young (in the middle of the ramp), not so young (toward the end of the ramp),
and so on (note that decreasing the slope of the curve in Fig. 3.20(b) introduces
more vagueness in what we mean by “young”). These types of vague (fuzzy)
statements are more consistent with what we humans use when talking impre-
cisely about age. Thus, we may interpret infinite-valued membership functions
as being the foundation of a fuzzy logic, and the sets generated using them may
be viewed as fuzzy sets.

3.6.2	 Introduction to Fuzzy Sets
Fuzzy set theory was introduced by L. A. Zadeh (Zadeh [1965]) more than
four decades ago. As the following discussion shows, fuzzy sets provide a for-
malism for dealing with imprecise information.

 3.6 ■ Fuzzy Techniques 129

Definitions

Let Z be a set of elements (objects), with a generic element of Z denoted by z;
that is, Z z= { }. Set Z often is referred to as the universe of discourse. A fuzzy
set A in Z is characterized by a membership function, mA z(), that associates
with each element of Z a real number in the interval [0, 1]. For a particular
element z0 from Z, the value of mA z()0 represents the degree of membership
of z0 in A.

The concept of “belongs to,” so familiar in ordinary (crisp) sets, does not
have the same meaning in fuzzy set theory. With ordinary sets we say that an
element either belongs or does not belong to a set. With fuzzy sets we say that
all z's for which mA z() = 1 are full members of the set A, all z's for which mA z()
is between 0 and 1 have partial membership in the set, and all z's for which
mA z() = 0 have zero degree of membership in the set (which, for all practical
purposes, means that they are not members of the set).

For example, in Fig. 3.20(b) mA() .25 0 5= , indicating that a person 25 years
old has a 0.5 grade membership in the set of young people. Similarly two people
of ages 15 and 35 have 1.0 and 0.0 grade memberships in this set, respectively.
Therefore, a fuzzy set, A, is an ordered pair consisting of values of z and a mem-
bership function that assigns a grade of membership in A to each z. That is,

	 A z z z ZA= ∈{ }, () |m 	

When z is continuous, A can have an infinite number of elements. When z is
discrete and its range of values is finite, we can tabulate the elements of A
explicitly. For example, if the age in Fig. 3.20 is limited to integers, then A can
be written explicitly as

	A = (,), (,), , (,), (, .), (, .), , (, .), (,)1 1 2 1 20 1 21 0 9 22 0 8 29 0 1 30 0… … ,, (,),31 0 …{ } 	

Note that, based on the preceding definition, (,)30 0 and pairs thereafter are
included of A, but their degree of membership in this set is 0. In practice, they
typically are not included because interest generally is in elements whose
degree of membership is nonzero. Because membership functions determine
uniquely the degree of membership in a set, the terms fuzzy set and mem-
bership function are used interchangeably in the literature. This is a frequent
source of confusion, so you should keep in mind the routine use of these two

The term grade of
membership is used also
to denote what we have
defined as the degree of
membership.

a b
Figure 3.20
Membership
functions of (a) a
crisp set, and (b) a
fuzzy set.

0 10 20 30 50 40
0

0.5

1

D
eg

re
e

of
 m

em
be

rs
hi

p

Age (z)

m

0 10 20 30 50 40
0

0.5

1

Age (z)

m

mA(z) mA(z)

130 Chapter 3 ■ Intensity Transformations and Spatial Filtering

terms to mean the same thing. To help you become comfortable with this
terminology, we use both terms interchangeably in this section. When mA z()
can have only two values, say, 0 and 1, the membership function reduces to the
familiar characteristic function of ordinary sets. Thus, ordinary sets are a spe-
cial case of fuzzy sets.

Although fuzzy logic and probability operate over the same [0, 1] interval,
there is a significant distinction to be made between the two. Consider the
example from Fig. 3.20. A probabilistic statement might read: “There is a 50%
chance that a person is young,” while a fuzzy statement might read “A per-
son's degree of membership in the set of young people is 0.5.” The difference
between these two statements is important. In the first statement, a person is
considered to be either in the set of young or the set of not young people; we
simply have only a 50% chance of knowing to which set the person belongs.
The second statement presupposes that a person is young to some degree, with
that degree being in this case 0.5. Another interpretation is to say that this is
an “average” young person: not really young, but not too near being not young.
In other words, fuzzy logic is not probabilistic at all; it just deals with degrees
of membership in a set. In this sense, we see that fuzzy logic concepts find
application in situations characterized by vagueness and imprecision, rather
than by randomness.

The following definitions are basic to the material in the following sections.

Empty set: A fuzzy set is empty if and only if its membership function is identi-
cally zero in Z.

Equality: Two fuzzy sets A and B are equal, written A B= , if and only if
m mA Bz z() ()= for all z Z∈ .

Complement: The complement (NOT) of a fuzzy set A, denoted by A, or
NOT(A), is defined as the set whose membership function is

	 m m
A Az z() ()= 1 - 	

for all z Z∈ .

Subset: A fuzzy set A is a subset of a fuzzy set B if and only if

	 m mA Bz z() ()… 	

for all z Z∈ .

Union: The union (OR) of two fuzzy sets A and B, denoted A B´ , or
A OR B, is a fuzzy set U with membership function

	 m m mU A Bz z z() max (), ()=   	

for all z Z∈ .

The notation “for all
z Z∈ ” reads “for all z
belonging to Z.”

 3.6 ■ Fuzzy Techniques 131

Intersection: The intersection (AND) of two fuzzy sets A and B, denoted, A B¨
or A AND B, is a fuzzy set I with membership function

	 m m mI A Bz z z() min (), ()=  	

for all z Z∈ .
Note that the familiar terms NOT, OR, and AND are used interchangeably

with the symbols  , ´, and ¨ to denote set complementation, union, and inter-
section, respectively.

■ Figure 3.21 illustrates some of the preceding definitions. Figure 3.21(a)
shows the membership functions of two sets, A and B, and Fig. 3.21(b) shows
the membership function of the complement of A. Figure 3.21(c) shows the
membership function of the union of A and B, and Fig. 3.21(d) shows the cor-
responding result for the intersection of these two sets. The dashed lines in Fig.
3.21are shown for reference only. The results of the fuzzy operations indicated
in Figs. 3.21(b)-(d) are the solid lines.

You are likely to encounter examples in the literature in which the area
under the curve of the membership function of, say, the intersection of two
fuzzy sets, is shaded to indicate the result of the operation. This is a carry over
from ordinary set operations and is incorrect. Only the points along the mem-
bership function itself (solid line) are applicable when dealing with fuzzy sets.
This is a good illustration of the comment made earlier that a membership
function and its corresponding fuzzy set are one and the same thing. 	 ■

Membership functions

Table 3.6 lists a set of membership functions used commonly for fuzzy set
work. The first three functions are piecewise linear, the next two functions are
smooth, and the last function is a truncated Gaussian. We develop M-functions
in Section 3.6.4 to implement the six membership functions in the table.

EXAMPLE 3.13:
Illustration of
fuzzy set defini-
tions.

c
a b

d
Figure 3.21
(a) Membership
functions of two
fuzzy sets, A and
B. (b) Member-
ship function of
the complement
of A. (c) and (d)
Membership func-
tions of the union
and intersection
of A and B.

1

0 z

mB(z)

1

0 z

mU(z)  max[mA(z), mB(z)]

1

0 z

1

0 z

mI(z)  min[mA(z), mB(z)]

Complement

Union Intersection

D
eg

re
e

of
 m

em
be

rs
hi

p

A(z)  1  mA(z)_

mA(z)

132 Chapter 3 ■ Intensity Transformations and Spatial Filtering

Name Equation Plot

Triangular

m()
() ()

() ()
z

z a

z a b a a z b

z b c b b z c

c z

=











0

1

0

6

- - … 6

- - - … 6

…
0

.5

1

z

m

Triangular

 a b c

Trapezoidal

m()

() ()

() ()

z

z a

z a b a a z b

b z c

z b c b c z d

d z

=












0

1

1

0

6

- - … 6

… 6

- - - … 6

…

 0

.5

1

z

m

Trapezoidal

a b c d

Sigma

m() () ()z

z a

z a b a a z b

b z

=







0

1

6

- - … 6

…

0

.5

1

z

m

Sigma

a b

S-shape†

S z a b

z a

z a
b a

a z p

z b
b a

p z b

b z

(, ,) =













0

2

1 2

1

2

2

6

-

-
… 6

-
-

-
… 6

…














0

.5

1

z

m

S-shape

a

p = (a  b)2

bp

Bell-shape
m()

(, ,)

(, ,)
z

S z a b z b

S b z a b b z
=





6

- …2

0

.5

1

z

m

Bell-shape

a b 2b  a

Truncated
Gaussian

m() ()
()

z e z b b a
z b

s= −






-
-

… -

2

2

0 otherwise

0

.5

1

z

m

Truncated Gaussian

a b 2b  a

0.607 2s

TABLE 3.6 Some commonly-used membership functions and corresponding plots.

† Typically, only the independent variable, z, is used as an argument when writing m()z in order to simplify notation. We made an
exception in the S-shape curve in order to use its form in writing the equation of the Bell-shape curve.

 3.6 ■ Fuzzy Techniques 133

3.6.3	 Using Fuzzy Sets
In this section we develop the foundation for using fuzzy sets, and then apply
the concepts developed here to image processing in Sections 3.6.5 and 3.6.6.

We begin the discussion with an example. Suppose that we want to develop
a fuzzy system to monitor the health of an electric motor in a power generating
station. For our purposes, the health of the motor is determined by the amount
of vibration it exhibits. To simplify the discussion, assume that we can accom-
plish the monitoring task by using a single sensor that outputs a single number:
average vibration frequency, denoted by z. We are interested in three ranges of
average frequency: low, mid, and high. A motor functioning in the low range
is said to be operating normally, whereas a motor operating in the mid range
is said to be performing marginally. A motor whose average vibration is in the
high range is said to be operating in the near-failure mode.

The frequency ranges just discussed may be viewed as fuzzy (in a way simi-
lar to age in Fig. 3.20), and we can describe the problem using, for example, the
fuzzy membership functions in Fig. 3.22(a). Associating variables with fuzzy
membership functions is called fuzzification. In the present context, frequency
is a linguistic variable, and a particular value of frequency, z0, is called a linguis-
tic value. A linguistic value is fuzzified by using a membership function to map
it to the interval [0, 1]. Figure 3.22(b) shows an example.

Keeping in mind that the frequency ranges are fuzzy, we can express our
knowledge about this problem in terms of the following fuzzy IF-THEN
rules:

R1: IF the frequency is low, THEN motor operation is normal.

OR

To simplify notation,
we use frequency to
mean average vibration
frequency from this
point on.

The part of an if-then
rule to the left of THEN
is the antecedent (or
premise). The part to the
right is called the conse-
quent (or conclusion.)

b
a

Figure 3.22
(a) Membership
functions used to
fuzzify frequency
measurements.
(b) Fuzzifying a
specific measure-
ment, z0.

0

0.5

1

D
eg

re
e

of
 m

em
be

rs
hi

p

m

mlow(z)

mmid(z)

z

mhigh(z)

Average vibration frequency

0

0.5

1

D
eg

re
e

of
 m

em
be

rs
hi

p

m

mlow(z) mmid(z)

z

mhigh(z)

Average vibration frequency
z0

mlow(z0)

mmid(z0)

mhigh(z0)

