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3 Intensity Transformations  
and Spatial Filtering

Preview
The term spatial domain refers to the image plane itself, and methods in 
this category are based on direct manipulation of pixels in an image. In this 
chapter we focus attention on two important categories of spatial domain 
processing: intensity (gray-level) transformations and spatial filtering. The lat-
ter approach sometimes is referred to as neighborhood processing, or spatial 
convolution. In the following sections we develop and illustrate MATLAB  
formulations representative of processing techniques in these two categories. 
We also introduce the concept of fuzzy image processing and develop sever-
al new M-functions for their implementation. In order to carry a consistent 
theme, most of the examples in this chapter are related to image enhancement. 
This is a good way to introduce spatial processing because enhancement is 
highly intuitive and appealing, especially to beginners in the field. As you will 
see throughout the book, however, these techniques are general in scope and 
have uses in numerous other branches of digital image processing.

  3.1	 Background

As noted in the preceding paragraph, spatial domain techniques operate di-
rectly on the pixels of an image. The spatial domain processes discussed in this 
chapter are denoted by the expression

	 g x y T f x y( , ) ( , )= [ ] 	

where f x y( , ) is the input image, g x y( , ) is the output (processed) image, and 
T is an operator on f defined over a specified neighborhood about point ( , )x y .  
In addition, T can operate on a set of images, such as performing the addition 
of K images for noise reduction.
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The principal approach for defining spatial neighborhoods about a point ( , )x y  
is to use a square or rectangular region centered at ( , )x y , as in Fig. 3.1. The center 
of the region is moved from pixel to pixel starting, say, at the top, left corner, 
and, as it moves, it encompasses different neighborhoods. Operator T is applied 
at each location ( , )x y  to yield the output, g, at that location. Only the pixels in the 
neighborhood centered at ( , )x y  are used in computing the value of g at ( , )x y .

Most of the remainder of this chapter deals with various implementations 
of the preceding equation. Although this equation is simple conceptually, its 
computational implementation in MATLAB requires that careful attention be 
paid to data classes and value ranges.

  3.2	 Intensity Transformation Functions

The simplest form of the transformation T is when the neighborhood in Fig. 3.1 
is of size 1 1*  (a single pixel). In this case, the value of g at ( , )x y  depends only 
on the intensity of f at that point, and T becomes an intensity or gray-level 
transformation function. These two terms are used interchangeably when deal-
ing with monochrome (i.e., gray-scale) images. When dealing with color images, 
the term intensity is used to denote a color image component in certain color 
spaces, as described in Chapter 7.

Because the output value depends only on the intensity value at a point, and 
not on a neighborhood of points, intensity transformation functions frequently 
are written in simplified form as

	 s T r= ( ) 	

where r denotes the intensity of f and s the intensity of g, both at the same 
coordinates ( , )x y  in the images.

y

x

Origin

(x, y)

Image f (x, y)

Figure 3.1 
A neighborhood 
of size 3 3*  
centered at point 
( , )x y  in an image. 
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3.2.1	 Functions imadjust and stretchlim
Function imadjust is the basic Image Processing Toolbox function for inten-
sity transformations of gray-scale images. It has the general syntax

g = imadjust(f, [low_in high_in], [low_out high_out], gamma)

As Fig. 3.2 illustrates, this function maps the intensity values in image f to 
new values in g, such that values between low_in and high_in map to values 
between low_out and high_out. Values below low_in and above high_in 
are clipped; that is, values below low_in map to low_out, and those above 
high_in map to high_out. The input image can be of class uint8, uint16, 
int16, single, or double, and the output image has the same class as the in-
put. All inputs to function imadjust, other than f and gamma, are specified as 
values between 0 and 1, independently of the class of f. If, for example, f is of 
class uint8, imadjust multiplies the values supplied by 255 to determine the 
actual values to use. Using the empty matrix ([ ]) for [low_in high_in] or 
for [low_out high_out] results in the default values [0 1]. If high_out is 
less than low_out, the output intensity is reversed.

Parameter gamma specifies the shape of the curve that maps the intensity 
values in f to create g. If gamma is less than 1, the mapping is weighted toward 
higher (brighter) output values, as in Fig. 3.2(a). If gamma is greater than 1, the 
mapping is weighted toward lower (darker) output values. If it is omitted from 
the function argument, gamma defaults to 1 (linear mapping).

■ Figure 3.3(a) is a digital mammogram image, f, showing a small lesion, and 
Fig. 3.3(b) is the negative image, obtained using the command

>> g1 = imadjust(f, [0 1], [1 0]);

This process, which is the digital equivalent of obtaining a photographic nega-
tive, is particularly useful for enhancing white or gray detail embedded in a 
large, predominantly dark region. Note, for example, how much easier it is to 
analyze the breast tissue in Fig. 3.3(b). The negative of an image can be ob-
tained also with toolbox function imcomplement:

imadjust

Recall from the  
discussion in Section 2.7 
that function mat2gray 
can be used for  
converting an image to 
class double and scaling 
its intensities to the 
range [0, 1],  
independently of the 
class of the input image.

Example 3.1:
Using function 
imadjust.

low_in high_in

low_out

high_out

low_in high_inlow_in high_in

gamma  1 gamma  1 gamma  1

a b c
Figure 3.2   
The various  
mappings  
available in  
function  
imadjust. 
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g = imcomplement(f)

Figure 3.3(c) is the result of using the command

>> g2 = imadjust(f, [0.5 0.75], [0 1]);

which expands the gray scale interval between 0.5 and 0.75 to the full [0, 1] 
range. This type of processing is useful for highlighting an intensity band of 
interest. Finally, using the command

>> g3 = imadjust(f, [ ], [ ], 2);

imcomplement

d
a b

e f
c

Figure 3.3 (a) Original digital mammogram. (b) Negative image. (c) Result of expanding the intensities in 
the  range [0.5, 0.75]. (d) Result of enhancing the image with gamma = 2. (e) and (f) Results of using func-
tion stretchlim as an automatic input into function imadjust. (Original image courtesy of G. E. Medical 
Systems.) 
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produced a result similar to (but with more gray tones than) Fig. 3.3(c) by com-
pressing the low end and expanding the high end of the gray scale [Fig. 3.3(d)].	

Sometimes, it is of interest to be able to use function imadjust “automati-
cally,” without having to be concerned about the low and high parameters dis-
cussed above. Function stretchlim is useful in that regard; its basic syntax is

Low_High = stretchlim(f)

where Low_High is a two-element vector of a lower and upper limit that can 
be used to achieve contrast stretching (see the following section for a definition 
of this term). By default, values in Low_High specify the intensity levels that 
saturate the bottom and top 1% of all pixel values in f. The result is used in 
vector [low_in high_in] in function imadjust, as follows:

>> g = imadjust(f, stretchlim(f), [ ]);

Figure 3.3(e) shows the result of performing this operation on Fig. 3.3(a). Ob-
serve the increase in contrast. Similarly, Fig. 3.3(f) was obtained using the com-
mand

>> g = imadjust(f, stretchlim(f), [1 0]);

As you can see by comparing Figs. 3.3(b) and (f), this operation enhanced the 
contrast of the negative image.	 ■

A slightly more general syntax for stretchlim is

Low_High = stretchlim(f, tol)

where tol is a two-element vector [low_frac high_frac] that specifies the 
fraction of the image to saturate at low and high pixel values.

If tol is a scalar, low_frac = tol, and high_frac = 1 − low_frac; this 
saturates equal fractions at low and high pixel values. If you omit it from the 
argument, tol defaults to [0.01 0.99], giving a saturation level of 2%. If you 
choose tol = 0, then Low_High = [min(f(:)) max(f(:))].

3.2.2	 Logarithmic and Contrast-Stretching Transformations
Logarithmic and contrast-stretching transformations are basic tools for  
dynamic range manipulation. Logarithm transformations are implemented  
using the expression

g = c*log(1 + f)

where c is a constant and f is floating point. The shape of this transformation 
is similar to the gamma curve in Fig. 3.2(a) with the low values set at 0 and the 

stretchlim

log , log2, and log10 
are the base e , base 2, 
and base 10 logarithms, 
respectively.

log
log2
log10
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high values set to 1 on both scales. Note, however, that the shape of the gamma 
curve is variable, whereas the shape of the log function is fixed.

One of the principal uses of the log transformation is to compress dynamic 
range. For example, it is not unusual to have a Fourier spectrum (Chapter 4) 
with values in the range [ , ]0 106  or higher. When displayed on a monitor that is 
scaled linearly to 8 bits, the high values dominate the display, resulting in lost 
visual detail in the lower intensity values in the spectrum. By computing the 
log, a dynamic range on the order of, for example, 106, is reduced to approxi-
mately 14 [i.e., log ( ) .e 10 13 86 = ], which is much more manageable.

When performing a logarithmic transformation, it is often desirable to bring 
the resulting compressed values back to the full range of the display. For 8 bits, 
the easiest way to do this in MATLAB is with the statement

>> gs = im2uint8(mat2gray(g));

Using mat2gray brings the values to the range [0, 1] and using im2uint8 brings 
them to the range [0, 255], converting the image to class uint8. 

The function in Fig. 3.4(a) is called a contrast-stretching transformation func-
tion because it expands a narrow range of input levels into a wide (stretched) 
range of output levels. The result is an image of higher contrast. In fact, in the 
limiting case shown in Fig. 3.4(b), the output is a binary image. This limiting 
function is called a thresholding function, which, as we discuss in Chapter 11, is 
a simple tool used for image segmentation. Using the notation introduced at 
the beginning of this section, the function in Fig. 3.4(a) has the form

	 s T r
m r E= =( )

( )
1

1 +
	

where r denotes the intensities of the input image, s the corresponding inten-
sity values in the output image, and E controls the slope of the function. This 
equation is implemented in MATLAB for a floating point image as

g = 1./(1 + (m./f).^E)

s  T(r)

T(r)

r
m

D
ar

k 
   

   
   

  L
ig

ht

Dark            Light

s  T(r)

T(r)

r
m

D
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k 
   

   
   

  L
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ht

Dark            Light

a b
Figure 3.4   
(a) Contrast-
stretching 
transformation. 
(b) Thresholding 
transformation. 
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Because the limiting value of g is 1, output values cannot exceed the range  
[0, 1] when working with this type of transformation. The shape in Fig. 3.4(a) 
was obtained with E = 20.

■ Figure  3.5(a) is a Fourier spectrum with values in the range 0 to 106,  
displayed on a linearly scaled, 8-bit display system. Figure 3.5(b) shows the 
result obtained using the commands

>> g = im2uint8(mat2gray(log(1 + double(f))));
>> imshow(g)

The visual improvement of g over the original image is evident.	 ■

3.2.3 Specifying Arbitrary Intensity Transformations
Suppose that it is necessary to transform the intensities of an image using a 
specified transformation function. Let T denote a column vector containing 
the values of the transformation function. For example, in the case of an 8-bit 
image, T(1) is the value to which intensity 0 in the input image is mapped, 
T(2) is the value to which 1 is mapped, and so on, with T(256) being the value 
to which intensity 255 is mapped. 

Programming is simplified considerably if we express the input and output 
images in floating point format, with values in the range [0 1].  This means 
that all elements of column vector T must be floating-point numbers in that 
same range. A simple way to implement intensity mappings is to use function  
interp1 which, for this particular application, has the syntax

g = interp1(z, T, f)

where f is the input image, g is the output image, T is the column vector just ex-
plained, and z is a column vector of the same length as T, formed as follows:

Example 3.2:
Using a log 
transformation to 
reduce dynamic 
range.

interp1

a b
Figure 3.5   
(a) A Fourier 
spectrum.  
(b) Result of  
using a log  
transformation. 
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z = linspace(0, 1, numel(T))';

For a pixel value in f, interp1 first finds that value in the abscissa (z). It 
then finds (interpolates)† the corresponding value in T and outputs the inter-
polated value to g in the corresponding pixel location. For example, suppose 
that T is the negative transformation, T = [1 0]'. Then, because T only has 
two elements, z = [0 1]'. Suppose that a pixel in f has the value 0.75. The 
corresponding pixel in g would be assigned the value 0.25. This process is noth-
ing more than the mapping from input to output intensities illustrated in Fig. 
3.4(a), but using an arbitrary transformation function T r( ). Interpolation is 
required because we only have a given number of discrete points for T, while 
r can have any value in the range [0 1].

3.2.4	 Some Utility M-Functions for Intensity Transformations
In this section we develop two custom M-functions that incorporate various 
aspects of the intensity transformations introduced in the previous three sec-
tions. We show the details of the code for one of them to illustrate error check-
ing, to introduce ways in which MATLAB functions can be formulated so that 
they can handle a variable number of inputs and/or outputs, and to show typi-
cal code formats used throughout the book. From this point on, detailed code 
of new M-functions is included in our discussions only when the purpose is to 
explain specific programming constructs, to illustrate the use of a new MAT-
LAB or Image Processing Toolbox function, or to review concepts introduced 
earlier. Otherwise, only the syntax of the function is explained, and its code is 
included in Appendix C. Also, in order to focus on the basic structure of the 
functions developed in the remainder of the book, this is the last section in 
which we show extensive use of error checking. The procedures that follow are 
typical of how error handling is programmed in MATLAB.

Handling a Variable Number of Inputs and/or Outputs

To check the number of arguments input into an M-function we use function 
nargin,

n = nargin

which returns the actual number of arguments input into the M-function. Simi-
larly, function nargout is used in connection with the outputs of an M-function. 
The syntax is

n = nargout

See Section 2.8.1 regard-
ing function linspace.

nargin

nargout

† Because interp1 provides interpolated values at discrete points, this function sometimes is interpreted 
as performing lookup table operations. In fact, MATLAB documentation refers to interp1 parentheti-
cally as a table lookup function. We use a multidimensional version of this function for just that purpose in  
approxfcn, a custom function developed in Section 3.6.4 for fuzzy image processing.
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For example, suppose that we execute the following hypothetical M-function 
at the prompt:

>> T = testhv(4, 5);

Use of nargin within the body of this function would return a 2, while use of 
nargout would return a 1.

Function nargchk can be used in the body of an M-function to check if the 
correct number of arguments was passed. The syntax is

msg = nargchk(low, high, number)

This function returns the message Not enough input arguments if number is 
less than low or Too many input arguments if number is greater than high. If 
number is between low and high (inclusive), nargchk returns an empty matrix. 
A frequent use of function nargchk is to stop execution via the error func-
tion if the incorrect number of arguments is input. The number of actual input 
arguments is determined by the nargin function. For example, consider the 
following code fragment:

function G = testhv2(x, y, z). . .
error(nargchk(2, 3, nargin));. . .

Typing

>> testhv2(6);

which only has one input argument would produce the error

Not enough input arguments.

and execution would terminate.
It is useful to be able to write functions in which the number of input and/

or output arguments is variable. For this, we use the variables varargin and 
varargout. In the declaration, varargin and varargout must be lowercase. 
For example,

function [m, n] = testhv3(varargin)

accepts a variable number of inputs into function testhv3.m, and

function [varargout] = testhv4(m, n, p)

returns a variable number of outputs from function testhv4. If function tes-
thv3 had, say, one fixed input argument, x, followed by a variable number of 
input arguments, then

nargchk

varargin
varargout
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function [m, n] = testhv3(x, varargin)

would cause varargin to start with the second input argument supplied by the 
user when the function is called. Similar comments apply to varargout. It is 
acceptable to have a function in which both the number of input and output 
arguments is variable.

When varargin is used as the input argument of a function, MATLAB 
sets it to a cell array (see Section  2.10.7) that contains the arguments pro-
vided by the user. Because varargin is a cell array, an important aspect of this  
arrangement is that the call to the function can contain a mixed set of inputs. 
For example, assuming that the code of our hypothetical function testhv3 
is equipped to handle it, a perfectly acceptable syntax having a mixed set of 
inputs could be

>> [m, n] = testhv3(f, [0  0.5  1.5], A, 'label');

where f is an image, the next argument is a row vector of length 3, A is a matrix, 
and 'label' is a character string. This is a powerful feature that can be used 
to simplify the structure of functions requiring a variety of different inputs. 
Similar comments apply to varargout.

Another M-Function for Intensity Transformations

In this section we develop a function that computes the following transforma-
tion functions: negative, log, gamma and contrast stretching. These transforma-
tions were selected because we will need them later, and also to illustrate the 
mechanics involved in writing an M-function for intensity transformations. In 
writing this function we use function tofloat,

[g, revertclass] = tofloat(f)

introduced in Section 2.7. Recall from that discussion that this function con-
verts an image of class logical, uint8, uint16, or int16 to class single,  
applying the appropriate scale factor. If f is of class double or single, then 
g = f; also, recall that revertclass is a function handle that can be used to 
covert the output back to the same class as f. 

Note in the following M-function, which we call intrans, how function  
options are formatted in the Help section of the code, how a variable number 
of inputs is handled, how error checking is interleaved in the code, and how 
the class of the output image is matched to the class of the input. Keep in mind 
when studying the following code that varargin is a cell array, so its elements 
are selected by using curly braces.

function g = intrans(f, method, varargin)
%INTRANS Performs intensity (gray-level) transformations.
%   G = INTRANS(F, 'neg') computes the negative of input image F.
% 
%   G = INTRANS(F, 'log', C, CLASS) computes C*log(1 + F) and

intrans
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%   multiplies the result by (positive) constant C. If the last two
%   parameters are omitted, C defaults to 1. Because the log is used
%   frequently to display Fourier spectra, parameter CLASS offers
%   the option to specify the class of the output as 'uint8' or
%   'uint16'. If parameter CLASS is omitted, the output is of the 
%   same class as the input. 
% 
%   G = INTRANS(F, 'gamma', GAM) performs a gamma transformation on
%   the input image using parameter GAM (a required input).  
%
%   G = INTRANS(F, 'stretch', M, E) computes a contrast-stretching
%   transformation using the expression 1./(1 + (M./F).^E).
%   Parameter M must be in the range [0, 1]. The default value for
%   M is mean2(tofloat(F)), and the default value for E is 4.
%
%   G = INTRANS(F, 'specified', TXFUN) performs the intensity
%   transformation s = TXFUN(r) where r are input intensities, s are
%   output intensities, and TXFUN is an intensity transformation
%   (mapping) function, expressed as a vector with values in the
%   range [0, 1]. TXFUN must have at least two values.
%
%   For the 'neg', 'gamma', 'stretch' and 'specified'
%   transformations, floating-point input images whose values are
%   outside the range [0, 1] are scaled first using MAT2GRAY. Other
%   images are converted to floating point using TOFLOAT. For the
%   'log' transformation,floating-point images are transformed
%   without being scaled; other images are converted to floating
%   point first using TOFLOAT.
%
%   The output is of the same class as the input, except if a
%   different class is specified for the 'log' option.

% Verify the correct number of inputs.
error(nargchk(2, 4, nargin))

if strcmp(method, 'log')
   % The log transform handles image classes differently than the
   % other transforms, so let the logTransform function handle that
   % and then return.
   g = logTransform(f, varargin{:});
   return;
end

% If f is floating point, check to see if it is in the range [0 1]. 
% If it is not, force it to be using function mat2gray.
if isfloat(f) && (max(f(:)) > 1 || min(f(:)) < 0)
   f = mat2gray(f);
end
[f, revertclass] = tofloat(f); %Store class of f for use later.

% Perform the intensity transformation specified.    
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switch method
case 'neg' 
   g = imcomplement(f); 

case 'gamma'
   g = gammaTransform(f, varargin{:});
   
case 'stretch'
   g = stretchTransform(f, varargin{:});
   
case 'specified'
   g = spcfiedTransform(f, varargin{:});
   
otherwise
   error('Unknown enhancement method.')
end

% Convert to the class of the input image.
g = revertclass(g);

%------------------------------------------------------------------%
function g = gammaTransform(f, gamma)
g = imadjust(f, [ ], [ ], gamma);

%------------------------------------------------------------------%
function g = stretchTransform(f, varargin)
if isempty(varargin)
   % Use defaults.
   m = mean2(f);
   E = 4.0;
elseif length(varargin) == 2
   m = varargin{1};
   E = varargin{2};
else
   error('Incorrect number of inputs for the stretch method.')
end
g = 1./(1 + (m./f).^E);

%------------------------------------------------------------------%
function g = spcfiedTransform(f, txfun)
% f is floating point with values in the range [0 1].
txfun = txfun(:); % Force it to be a column vector.
if any(txfun) > 1 || any(txfun) <= 0
   error('All elements of txfun must be in the range [0 1].')
end
T = txfun;
X = linspace(0, 1, numel(T))';
g = interp1(X, T, f);

%------------------------------------------------------------------%
function g = logTransform(f, varargin)
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[f, revertclass] = tofloat(f);
if numel(varargin) >= 2
   if strcmp(varargin{2}, 'uint8')
      revertclass = @im2uint8;
   elseif strcmp(varargin{2}, 'uint16')
      revertclass = @im2uint16;
   else
      error('Unsupported CLASS option for ''log'' method.')
   end
end
if numel(varargin) < 1
   % Set default for C.
   C = 1;
else
   C = varargin{1};
end
g = C * (log(1 + f));
g = revertclass(g);	

■  As an illustration of function intrans, consider the image in Fig.  3.6(a), 
which is an ideal candidate for contrast stretching to enhance the skeletal struc-
ture. The result in Fig. 3.6(b) was obtained with the following call to intrans:

>> g = intrans(f, 'stretch', mean2(tofloat(f)), 0.9);
>> figure, imshow(g)

Note how function mean2 was used to compute the mean value of f directly 
inside the function call. The resulting value was used for m. Image f was con-
verted to floating point using tofloat in order to scale its values to the range  
[0, 1] so that the mean would also be in this range, as required for input m. The 
value of E was determined interactively.	 ■

An M-Function for Intensity Scaling

When working with images, computations that result in pixel values that span a 
wide negative to positive range are common. While this presents no problems 
during intermediate computations, it does become an issue when we want to 
use an 8-bit or 16-bit format for saving or viewing an image, in which case it 
usually is desirable to scale the image to the full, maximum range, [0, 255] or  
[0, 65535]. The following custom M-function, which we call gscale, accom-
plishes this. In addition, the function can map the output levels to a specified 
range. The code for this function does not include any new concepts so we do 
not include it here. See Appendix C for the listing.

The syntax of function gscale is

g = gscale(f, method, low, high)

Example 3.3:
Illustration of 
function intrans.

gscale
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where f is the image to be scaled. Valid values for method are 'full8' (the 
default), which scales the output to the full range [0, 255], and 'full16', which 
scales the output to the full range [0, 65535]. If included, parameters low and 
high are ignored in these two conversions. A third valid value of method is 
'minmax', in which case parameters low and high, both in the range [0, 1], must 
be provided. If 'minmax' is selected, the levels are mapped to the range [low, 
high]. Although these values are specified in the range [0, 1], the program 
performs the proper scaling, depending on the class of the input, and then 
converts the output to the same class as the input. For example, if f is of class 
uint8 and we specify 'minmax' with the range [0, 0.5], the output also will be 
of class uint8, with values in the range [0, 128]. If f is floating point and its 
range of values is outside the range [0, 1], the program converts it to this range 
before proceeding. Function gscale is used in numerous places throughout 
the book.

  3.3	 Histogram Processing and Function Plotting

Intensity transformation functions based on information extracted from image 
intensity histograms play a central role in image processing, in areas such as 
enhancement, compression, segmentation, and description. The focus of this 
section is on obtaining, plotting, and using histograms for image enhancement. 
Other applications of histograms are discussed in later chapters.

See Section 4.5.3 for a 
discussion of 2-D plotting 
techniques.

a b
Figure 3.6   
(a) Bone scan 
image. (b) Image 
enhanced using a 
contrast-stretch-
ing transforma-
tion. (Original 
image courtesy 
of G. E. Medical 
Systems.) 
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3.3.1	 Generating and Plotting Image Histograms
The histogram of a digital image with L total possible intensity levels in the 
range [0, G] is defined as the discrete function

	 h r nk k( ) = 	

where rk is the kth intensity level in the interval [0, G] and nk is the number of 
pixels in the image whose intensity level is rk. The value of G is 255 for images of 
class uint8, 65535 for images of class uint16, and 1.0 for floating point images. 
Note that G L= - 1 for images of class uint8 and uint16.

Sometimes it is necessary to work with normalized histograms, obtained 
simply by dividing all elements of h rk( ) by the total number of pixels in the 
image, which we denote by n:

	
p r

h r
n

n
n

k
k

k

( )
( )=

=
	

where, for integer images, k L= 0 1 2 1, , , ,… - . From basic probability, we rec-
ognize p rk( ) as an estimate of the probability of occurrence of intensity level rk.

The core function in the toolbox for dealing with image histograms is imhist, 
with the basic syntax:

h = imhist(f, b)

where f is the input image, h is its histogram, and b is the number of bins used 
in forming the histogram (if b is not included in the argument, b = 256 is used 
by default). A bin is simply a subdivision of the intensity scale. For example, if 
we are working with uint8 images and we let b = 2, then the intensity scale is 
subdivided into two ranges: 0 to 127 and 128 to 255. The resulting histogram 
will have two values: h(1), equal to the number of pixels in the image with 
values in the interval [0, 127] and h(2), equal to the number of pixels with 
values in the interval [128, 255]. We obtain the normalized histogram by using 
the expression

p = imhist(f, b)/numel(f)

Recall from Section  2.10.3 that function numel(f) gives the number of  
elements in array f (i.e., the number of pixels in the image).

■ Consider the image, f, from Fig. 3.3(a). The simplest way to plot its histo-
gram on the screen is to use imhist with no output specified:

>> imhist(f);

imhist

Example 3.4:
Computing and 
plotting image 
histograms.
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Figure 3.7(a) shows the result. This is the histogram display default in the tool-
box. However, there are many other ways to plot a histogram, and we take 
this opportunity to explain some of the plotting options in MATLAB that are 
representative of those used in image processing applications.

Histograms can be plotted also using bar graphs. For this purpose we can 
use the function

bar(horz, z, width)

where z is a row vector containing the points to be plotted, horz is a vector of 
the same dimension as z that contains the increments of the horizontal scale, 
and width is a number between 0 and 1. In other words, the values of horz 
give the horizontal increments and the values of z are the corresponding verti-
cal values. If horz is omitted, the horizontal axis is divided in units from 0 to 
length(z). When width is 1, the bars touch; when it is 0, the bars are vertical 
lines. The default value is 0.8. When plotting a bar graph, it is customary to 
reduce the resolution of the horizontal axis by dividing it into bands. 

The following commands produce a bar graph, with the horizontal axis  
divided into groups of approximately 10 levels:

>> h = imhist(f, 25);
>> horz = linspace(0, 255, 25);

bar
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Figure 3.7  Various 
ways to plot an 
image histogram.  
(a) imhist,  
(b) bar,  
(c) stem,  
(d) plot. 
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>> bar(horz, h)
>> axis([0 255 0 60000])
>> set(gca, 'xtick', 0:50:255)
>> set(gca, 'ytick', 0:20000:60000)

Figure 3.7(b) shows the result. The narrow peak located at the high end of the 
intensity scale in Fig. 3.7(a) is lower in the bar graph because larger horizontal 
increments were used in that graph. The vertical scale spans a wider range of 
values than for the full histogram in Fig. 3.7(a) because the height of each bar 
is determined by all pixels in a range, rather than by all pixels with a single 
value. 

The fourth statement in the preceding code was used to expand the lower 
range of the vertical axis for visual analysis, and to set the horizontal axis to the 
same range as in Fig. 3.7. One of the axis function syntax forms is

axis([horzmin  horzmax  vertmin  vertmax])

which sets the minimum and maximum values in the horizontal and vertical 
axes. In the last two statements, gca means “get current axis” (i.e., the axes of 
the figure last displayed), and xtick and ytick set the horizontal and vertical 
axes ticks in the intervals shown. Another syntax used frequently is

axis tight

which sets the axis limits to the range of the data.
Axis labels can be added to the horizontal and vertical axes of a graph using 

the functions

xlabel('text string', 'fontsize', size) 
ylabel('text string', 'fontsize', size)

where size is the font size in points. Text can be added to the body of the fig-
ure by using function text, as follows:

text(xloc, yloc, 'text string', 'fontsize', size)

where xloc and yloc define the location where text starts. Use of these three 
functions is illustrated in Example 3.4. It is important to note that functions 
that set axis values and labels are used after the function has been plotted.

A title can be added to a plot using function title, whose basic syntax is

title('titlestring')

where titlestring is the string of characters that will appear on the title, 
centered above the plot.

A stem graph is similar to a bar graph. The syntax is

stem(horz, z, 'LineSpec', 'fill')

where z is row vector containing the points to be plotted, and horz is as  

set
gca

xlabel
ylabel

text

title

stem

axis ij places the origin 
of the axis system on 
the top left. This is the 
default  is when  
superimposing axes on 
images. As we show in 
Example 5.12, sometimes 
it is useful to have the 
origin on the bottom left. 
Using axis xy does that.

axis 
axis ij 
axis xy
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described for function bar. If horz is omitted, the horizontal axis is divided in 
units from 0 to length(z), as before.

The argument,

LineSpec

is a triplet of values from Table  3.1. For example, stem(horz, h, 'r−−p') 
produces a stem plot where the lines and markers are red, the lines are dashed, 
and the markers are five-point stars. If fill is used, the marker is filled with 
the color specified in the first element of the triplet. The default color is blue, 
the line default is solid, and the default marker is a circle. The stem graph 
in Fig. 3.7(c) was obtained using the statements

>> h = imhist(f, 25);
>> horz = linspace(0, 255, 25);
>> stem(horz, h, 'fill')
>> axis([0 255 0 60000])
>> set(gca, 'xtick', [0:50:255])
>> set(gca, 'ytick', [0:20000:60000])

Next, we consider function plot, which plots a set of points by linking them 
with straight lines. The syntax is

Color Specifiers Line Specifiers Marker Specifiers

Symbol Color Symbol Line Style Symbol Marker

k Black − Solid + Plus sign

w White −− Dashed o Circle

r Red : Dotted * Asterisk

g Green −. Dash-dot . Point

b Blue x Cross

c Cyan s Square

y Yellow d Diamond

m Magenta ^ Upward-pointing  
triangle

v Downward-pointing 
triangle

> Right-pointing 
triangle

< Left-pointing  
triangle

p Pentagram  
(five-point star)

h Hexagram  
(six-point star)

Table 3.1
Color, line, and 
marker specifiers 
for use in  
functions stem 
and plot.
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plot(horz, z, 'LineSpec')

where the arguments are as defined previously for stem plots. As in stem, the 
attributes in plot are specified as a triplet. The defaults for plot are solid blue 
lines with no markers. If a triplet is specified in which the middle value is blank 
(or omitted), no lines are plotted. As before, if horz is omitted, the horizontal 
axis is divided in units from 0 to length(z). 

The plot in Fig. 3.7(d) was obtained using the following statements:

>> hc = imhist(f);
>> plot(hc) % Use the default values.
>> axis([0 255 0 15000])
>> set(gca, 'xtick', [0:50:255])
>> set(gca, 'ytick', [0:2000:15000])

Function plot is used frequently to display transformation functions (see 
Example 3.5).	 ■

In the preceding discussion axis limits and tick marks were set manually. To 
set the limits and ticks automatically, use functions ylim and xlim, which, for 
our purposes here, have the syntax forms

ylim('auto') 
xlim('auto')

Among other possible variations of the syntax for these two functions (see the 
help documentation for details), there is a manual option, given by

ylim([ymin  ymax]) 
xlim([xmin  xmax])

which allows manual specification of the limits. If the limits are specified for 
only one axis, the limits on the other axis are set to 'auto' by default. We use 
these functions in the following section. Typing hold on at the prompt retains 
the current plot and certain axes properties so that subsequent graphing com-
mands add to the existing graph.

Another plotting function that is particularly useful when dealing with func-
tion handles (see Sections 2.10.4 and 2.10.5) is function fplot. The basic syn-
tax is

fplot(fhandle, limits, 'LineSpec')

where fhandle is a function handle, and limits is a vector specifying the  
x-axis limits, [xmin xmax]. You will recall from the discussion of function 
timeit in Section 2.10.5 that using function handles allows the syntax of the 
underlying function to be independent of the parameters of the function to be 
processed (plotted in this case). For example, to plot the hyperbolic tangent 
function, tanh, in the range [−2 2] using a dotted line we write

plot

See the plot help page 
for additional options 
available for this func-
tion. 

Plot defaults are useful 
for superimposing 
markers on an image. For 
example, to place green 
asterisks at points given 
in vectors x and y in an 
image, f, we use: 

>> imshow(f)
>> hold on
>> plot(y(:), x(:), 'g*')

where the order of y(:) 
and x(:) is reversed 
to compensate for the 
fact that image and plot 
coordinate systems are 
different in MATLAB. 
Command hold on is 
explained below.

ylim
xlim

hold on

fplot

See the help page for 
fplot for a discussion of 
additional syntax forms. 
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>> fhandle = @tanh;
>> fplot(fhandle, [−2 2], ':')

Function fplot uses an automatic, adaptive increment control scheme to 
produce a representative graph, concentrating more detail where the rate of 
change is the greatest. Thus, only the plotting limits have to be specified by the 
user. While this simplifies plotting tasks, the automatic feature can at times 
yield unexpected results. For example, if a function is initially 0 for an appre-
ciable interval, it is possible for fplot to assume that the function is zero and 
just plot 0 for the entire interval. In cases such as this, you can specify a mini-
mum number of points for the function to plot. The syntax is

fplot(fhandle, limits, 'LineSpec', n)

Specifying n >= 1 forces fplot to plot the function with a minimum of n + 1 
points, using a step size of (1/n)*(upper_lim − lower_lim), where upper 
and lower refer to the upper and lower limits specified in limits.

3.3.2	 Histogram Equalization
Assume for a moment that intensity levels are continuous quantities normal-
ized to the range [0, 1], and let p rr( ) denote the probability density function 
(PDF) of the intensity levels in a given image, where the subscript is used for 
differentiating between the PDFs of the input and output images. Suppose that 
we perform the following transformation on the input levels to obtain output 
(processed) intensity levels, s,

	 s T r p d
r

r= =( ) ( )
02 w w 	

where w is a dummy variable of integration. It can be shown (Gonzalez and 
Woods [2008]) that the probability density function of the output levels is uni-
form; that is,

	 p s
s

s( ) =




1 0 1for 

0 otherwise

… …
	

In other words, the preceding transformation generates an image whose inten-
sity levels are equally likely, and, in addition, cover the entire range [0, 1]. The 
net result of this intensity-level equalization process is an image with increased 
dynamic range, which will tend to have higher contrast. Note that the transfor-
mation function is really nothing more than the cumulative distribution func-
tion (CDF).

When dealing with discrete quantities we work with histograms and call 
the preceding technique histogram equalization, although, in general, the his-
togram of the processed image will not be uniform, due to the discrete nature 
of the variables. With reference to the discussion in Section 3.3.1, let p rr j( ) for 
j L= 0 1 2 1, , , ,… - , denote the histogram associated with the intensity levels 
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of a given image, and recall that the values in a normalized histogram are 
approximations to the probability of occurrence of each intensity level in the 
image. For discrete quantities we work with summations, and the equaliza-
tion transformation becomes

	

s T r

p r

n

n

k k

r j
j

k

j

j

k

=

=

=

=

=

∑

∑

( )

( )
0

0

	

for k L= 0 1 2 1, , , ,… - , where sk is the intensity value in the output (pro-
cessed) image corresponding to value rk in the input image.

Histogram equalization is implemented in the toolbox by function histeq, 
which has the syntax

g = histeq(f, nlev)

where f is the input image and nlev is the number of intensity levels specified 
for the output image. If nlev is equal to L (the total number of possible lev-
els in the input image), then histeq implements the transformation function  
directly. If nlev is less than L, then histeq attempts to distribute the levels so 
that they will approximate a flat histogram. Unlike imhist, the default value 
in histeq is nlev = 64. For the most part, we use the maximum possible num-
ber of levels (generally 256) for nlev because this produces a true implemen-
tation of the histogram-equalization method just described.

■ Figure 3.8(a) is an electron microscope image of pollen, magnified approxi-
mately 700 times. In terms of needed enhancement, the most important fea-
tures of this image are that it is dark and has a low dynamic range. These char-
acteristics are evident in the histogram in Fig. 3.8(b), in which the dark nature 
of the image causes the histogram to be biased toward the dark end of the gray 
scale. The low dynamic range is evident from the fact that the histogram is nar-
row with respect to the entire gray scale. Letting f denote the input image, the 
following sequence of steps produced Figs. 3.8(a) through (d):

>> imshow(f); % Fig. 3.8(a).
>> figure, imhist(f) % Fig. 3.8(b).
>> ylim('auto') 
>> g = histeq(f, 256); 
>> figure, imshow(g) % Fig. 3.8(c).
>> figure, imhist(g) % Fig. 3.8(d).
>> ylim('auto')

The image in Fig.  3.8(c) is the histogram-equalized result. The improve-
ments in average intensity and contrast are evident. These features also are 

histeq

Example 3.5:
Histogram  
equalization.
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evident in the histogram of this image, shown in Fig. 3.8(d). The increase in 
contrast is due to the considerable spread of the histogram over the entire  
intensity scale. The increase in overall intensity is due to the fact that the aver-
age intensity level in the histogram of the equalized image is higher (lighter) 
than the original. Although the histogram-equalization method just discussed 
does not produce a flat histogram, it has the desired characteristic of being able 
to increase the dynamic range of the intensity levels in an image.

As noted earlier, the transformation function used in histogram equaliza-
tion is the cumulative sum of normalized histogram values. We can use func-
tion cumsum to obtain the transformation function, as follows:

>> hnorm = imhist(f)./numel(f); % Normalized histogram.
>> cdf = cumsum(hnorm); % CDF.

A plot of cdf, shown in Fig. 3.9, was obtained using the following commands:

cumsum

If A is a vector,  
B = cumsum(A) gives the 
sum of its elements. If A 
is a higher-dimensional 
array, then 
B = cumsum(A, dim) 
gives the sum along the 
dimension specified by 
dim.
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Figure 3.8  
Illustration of 
histogram  
equalization.  
(a) Input image, 
and (b) its  
histogram.  
(c) Histogram-
equalized image, 
and (d) its 
histogram. The 
improvement 
between (a) and 
(c) is evident.  
(Original image 
courtesy of Dr. 
Roger Heady, 
Research School 
of Biological  
Sciences, Austra-
lian National  
University,  
Canberra.) 
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>> x = linspace(0, 1, 256);   % Intervals for [0,1] horiz 
                              % scale. 
>> plot(x, cdf)               % Plot cdf vs. x. 
>> axis([0 1 0 1]);           % Scale, settings, and labels: 
>> set(gca, 'xtick', 0:.2:1) 
>> set(gca, 'ytick', 0:.2:1) 
>> xlabel('Input intensity values', 'fontsize', 9)
>> ylabel('Output intensity values', 'fontsize', 9)

The text in the body of the graph was inserted using the TextBox and Arrow 
commands from the Insert menu in the MATLAB figure window containing 
the plot. You can use function annotation to write code that inserts items 
such as text boxes and arrows on graphs, but the Insert menu is considerably 
easier to use. 

You can see by looking at the histograms in Fig. 3.8 that the transformation 
function in Fig. 3.9 maps a narrow range of intensity levels in the lower end 
of the input intensity scale to the full intensity range in the output image. The 
improvement in image contrast is evident by comparing the input and output 
images in Fig. 3.8.	 ■

3.3.3	 Histogram Matching (Specification)
Histogram equalization produces a transformation function that is adaptive, in 
the sense that it is based on the histogram of a given image. However, once the 
transformation function for an image has been computed, it does not change 

annotation

See the help page for this 
function for details on 
how to use it.
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Figure 3.9 
Transformation 
function used to 
map the inten-
sity values from 
the input image 
in Fig. 3.7(a) to 
the values of the 
output image in 
Fig. 3.7(c). 
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unless the histogram of the image changes. As noted in the previous section, 
histogram equalization achieves enhancement by spreading the levels of the 
input image over a wider range of the intensity scale. We show in this section 
that this does not always lead to a successful result. In particular, it is useful in 
some applications to be able to specify the shape of the histogram that we wish 
the processed image to have. The method used to generate an image that has a 
specified histogram is called histogram matching or histogram specification.

The method is simple in principle. Consider for a moment continuous levels 
that are normalized to the interval [0, 1], and let r and z denote the intensity 
levels of the input and output images. The input levels have probability den-
sity function p rr( ) and the output levels have the specified probability density 
function p zz( ). We know from the discussion in the previous section that he 
transformation

	 s T r p d
r

r= =( ) ( )
02 w w 	

results in intensity levels, s, with a uniform probability density function p ss( ). 
Suppose now that we define a variable z with the property

	 H z p d
z

z( ) ( )=
02 w w=s 	

Keep in mind that we are after an image with intensity levels, z, that have the 
specified density p zz( ). From the preceding two equations, it follows that

	 z H s H T r= = [ ]- -1 1( ) ( ) 	

We can find T r( ) from the input image (this is the histogram-equalization 
transformation discussed in the previous section), so it follows that we can 
use the preceding equation to find the transformed levels z whose density is 
the specified p zz( ) provided that we can find H -1. When working with discrete 
variables, we can guarantee that the inverse of H exists if p zk( ) is a valid his-
togram (i.e., it has unit area and all its values are nonnegative), and none of 
its components is zero [i.e., no bin of p zk( ) is empty]. As in histogram equal-
ization, the discrete implementation of the preceding method only yields an  
approximation to the specified histogram.

The toolbox implements histogram matching using the following syntax in 
histeq:

g = histeq(f, hspec)

where f is the input image, hspec is the specified histogram (a row vector of 
specified values), and g is the output image, whose histogram approximates 
the specified histogram, hspec. This vector should contain integer counts cor-
responding to equally spaced bins. A property of histeq is that the histogram 
of g generally better matches hspec when length(hspec) is much smaller 
than the number of intensity levels in f.
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■ Figure 3.10(a) shows an image, f, of the Mars moon, Phobos, and Fig. 3.10(b) 
shows its histogram, obtained using imhist(f). The image is dominated by 
large, dark areas, resulting in a histogram characterized by a large concentra-
tion of pixels in the dark end of the gray scale. At first glance, one might con-
clude that histogram equalization would be a good approach to enhance this 
image, so that details in the dark areas become more visible. However, the 
result in Fig. 3.10(c), obtained using the command

>> f1 = histeq(f, 256);

shows that histogram equalization in fact produced an image with a “washed-
out” appearance—not a particularly good result in this case. The reason for 
this can be seen by studying the histogram of the equalized image, shown in 
Fig.  3.10(d). Here, we see that the intensity levels have been shifted to the  
upper one-half of the gray scale, thus giving the image the low-contrast, 
washed-out appearance mentioned above. The cause of the shift is the large 
concentration of dark components at or near 0 in the original histogram. The 
cumulative transformation function obtained from this histogram is steep, thus 
mapping the large concentration of pixels in the low end of the gray scale to 
the high end of the scale.

One possibility for remedying this situation is to use histogram matching, 
with the desired histogram having a lesser concentration of components in the 
low end of the gray scale, and maintaining the general shape of the histogram 
of the original image. We note from Fig.  3.10(b) that the histogram is basi-
cally bimodal, with one large mode at the origin, and another, smaller, mode at 
the high end of the gray scale. These types of histograms can be modeled, for 
example, by using multimodal Gaussian functions. The following M-function 
computes a bimodal Gaussian function normalized to unit area, so it can be 
used as a specified histogram.

function p = twomodegauss(m1, sig1, m2, sig2, A1, A2, k)
%TWOMODEGAUSS Generates a two-mode Gaussian function.
%   P = TWOMODEGAUSS(M1, SIG1, M2, SIG2, A1, A2, K) generates a
%   two-mode, Gaussian-like function in the interval [0, 1]. P is a
%   256-element vector normalized so that SUM(P) = 1. The mean and
%   standard deviation of the modes are (M1, SIG1) and (M2, SIG2),
%   respectively. A1 and A2 are the amplitude values of the two
%   modes. Since the output is normalized, only the relative values
%   of A1 and A2 are important. K is an offset value that raises the
%   "floor" of the function. A good set of values to try is M1 =
%   0.15, SIG1 = 0.05, M2 = 0.75, SIG2 = 0.05, A1 = 1, A2 = 0.07,
%   and K = 0.002.

c1 = A1 * (1 / ((2 * pi) ^ 0.5) * sig1);
k1 = 2 * (sig1 ^ 2); 
c2 = A2 * (1 / ((2 * pi) ^ 0.5) * sig2); 
k2 = 2 * (sig2 ^ 2); 
z  = linspace(0, 1, 256);

Example 3.6:
Histogram 
matching.

twomodegauss
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p = k + c1 * exp(−((z − m1) .^ 2) ./ k1) + ... 
    c2 * exp(−((z − m2) .^ 2) ./ k2);
p = p ./ sum(p(:));	

The following interactive function accepts inputs from a keyboard and plots 
the resulting Gaussian function. Refer to Section 2.10.6 for an explanation of 
function input. Note how the limits of the plots are set.

function p = manualhist
%MANUALHIST Generates a two-mode histogram interactively.
%   P = MANUALHIST generates a two-mode histogram using function
%   TWOMODEGAUSS(m1, sig1, m2, sig2, A1, A2, k). m1 and m2 are the
%   means of the two modes and must be in the range [0,1]. SIG1 and
%   SIG2 are the standard deviations of the two modes. A1 and A2 are
%   amplitude values, and k is an offset value that raises the floor

manualhist
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Figure 3.10   
(a) Image of 
the Mars moon 
Phobos.  
(b) Histogram.  
(c) Histogram-
equalized image. 
(d) Histogram  
of (c).  
(Original image 
 courtesy of 
NASA.) 
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%   of the the histogram. The number of elements in the histogram 
%   vector P is 256 and sum(P) is normalized to 1. MANUALHIST 
%   repeatedly prompts for the parameters and plots the resulting
%   histogram until the user types an 'x' to quit, and then it
%   returns the last histogram computed.
%
%   A good set of starting values is: (0.15, 0.05, 0.75, 0.05, 1,
%   0.07, 0.002).  
 
% Initialize.
repeats = true;
quitnow = 'x';
 
% Compute a default histogram in case the user quits before
% estimating at least one histogram. 
p = twomodegauss(0.15, 0.05, 0.75, 0.05, 1, 0.07, 0.002);
 
% Cycle until an x is input.
while repeats  
   s = input('Enter m1, sig1, m2, sig2, A1, A2, k OR x to quit:',...
      's');
   if strcmp(s, quitnow) 
      break
   end
   
   % Convert the input string to a vector of numerical values and
   % verify the number of inputs.
   v = str2num(s);
   if numel(v) ~= 7
      disp('Incorrect number of inputs.')
      continue
   end
   
   p = twomodegauss(v(1), v(2), v(3), v(4), v(5), v(6), v(7));
   % Start a new figure and scale the axes. Specifying only xlim
   % leaves ylim on auto. 
   figure, plot(p)
   xlim([0 255])
end	

Because the problem with histogram equalization in this example is due 
primarily to a large concentration of pixels in the original image with levels 
near 0, a reasonable approach is to modify the histogram of that image so 
that it does not have this property. Figure 3.11(a) shows a plot of a function 
(obtained with program manualhist) that preserves the general shape of the 
original histogram, but has a smoother transition of levels in the dark region of 
the intensity scale. The output of the program, p, consists of 256 equally spaced 
points from this function and is the desired specified histogram. An image with 
the specified histogram was generated using the command
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>> g = histeq(f, p);

Figure  3.11(b) shows the result. The improvement over the histogram-
equalized result in Fig. 3.10(c) is evident. Note that the specified histogram rep-
resents a rather modest change from the original histogram. This is all that was  
required to obtain a significant improvement in enhancement. The histogram 
of Fig. 3.11(b) is shown in Fig. 3.11(c). The most distinguishing feature of this 
histogram is how its low end has been moved closer to a lighter region of the 
gray scale, and thus closer to the specified shape. Note, however, that the shift 
to the right was not as extreme as the shift in the histogram in Fig. 3.10(d), 
which corresponds to the poorly enhanced image of Fig. 3.10(c).	 ■

3.3.4	 Function adapthisteq
This toolbox function performs so-called contrast-limited adaptive histogram 
equalization (CLAHE). Unlike the methods discussed in the previous two sec-
tions, which operate on an entire image, this approach consists of processing 
small regions of the image (called tiles) using histogram specification for each 
tile individually. Neighboring tiles are then combined using bilinear interpo-
lation to eliminate artificially induced boundaries. The contrast, especially in 

See Section 6.6 regarding 
interpolation.
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areas of homogeneous intensity, can be limited to avoid amplifying noise. The 
syntax for adapthisteq is

g = adapthisteq(f, param1, val1, param2, val2, ...)

where f is the input image, g is the output image, and the param/val pairs are 
as listed in Table 3.2.

■ Figure 3.12(a) is the same as Fig. 3.10(a) and Fig. 3.12(b) is the result of using 
all the default settings in function adapthisteq:

>> g1 = adapthisteq(f);

Although this result shows a slight increase in detail, significant portions of the 
image still are in the shadows. Fig. 3.12(c) shows the result of increasing the 
size of the tiles to [25 25]:

>> g2 = adapthisteq(f, 'NumTiles', [25 25]);

Sharpness increased slightly, but no new details are visible. Using the com-
mand

adapthisteq

Example 3.7: 
Using function 
adapthisteq. 

Parameter Value

'NumTiles' Two-element vector of positive integers specifying the number of tiles by row and 
column, [r c]. Both r and c must be at least 2. The total number of tiles is equal to 
r*c. The default is [8 8].

'ClipLimit' Scalar in the range [0 1] that specifies a contrast enhancement limit. Higher numbers 
result in more contrast. The default is 0.01.

'NBins' Positive integer scalar specifying the number of bins for the histogram used in build-
ing a contrast enhancing transformation. Higher values result in greater dynamic 
range at the cost of slower processing speed. The default is 256.

'Range' A string specifying the range of the output image data:
'original' — Range is limited to the range of the original image, 

[min(f(:)) max(f(:))].
'full' — Full range of the output image class is used. For example, for uint8 data, 

range is [0 255]. This is the default.

'Distribution' A string specifying the desired histogram shape for the image tiles:
'uniform' — Flat histogram (this is the default).
'rayleigh' — Bell-shaped histogram.
'exponential' — Curved histogram.

(See Section 5.2.2 for the equations for these distributions.

'Alpha' Nonnegative scalar applicable to the Rayleigh and exponential distributions. The 
default value is 0.4.

Table 3.2 Parameters and corresponding values for use in function adapthisteq.
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>> g3 = adapthisteq(f, 'NumTiles', [25 25], 'ClipLimit', 0.05);

yielded the result in Fig. 3.12(d). The enhancement in detail in this image is sig-
nificant compared to the previous two results. In fact, comparing Figs. 3.12(d) 
and 3.11(b) provides a good example of the advantage that local enhance-
ment can have over global enhancement methods. Generally, the price paid is  
additional function complexity. 	 ■

  3.4	 Spatial Filtering

As mentioned in Section 3.1 and illustrated in Fig. 3.1, neighborhood processing 
consists of (1) selecting a center point, ( , )x y ; (2) performing an operation that 
involves only the pixels in a predefined neighborhood about ( , )x y ; (3) letting 
the result of that operation be the “response” of the process at that point; and 
(4) repeating the process for every point in the image. The process of moving 
the center point creates new neighborhoods, one for each pixel in the input im-
age. The two principal terms used to identify this operation are neighborhood 
processing and spatial filtering, with the second term being more prevalent. As 
explained in the following section, if the computations performed on the pixels 
of the neighborhoods are linear, the operation is called linear spatial filtering 
(the term spatial convolution also used); otherwise it is called nonlinear spatial 
filtering.

3.4.1	 Linear Spatial Filtering
The concept of linear filtering has its roots in the use of the Fourier transform 
for signal processing in the frequency domain, a topic discussed in detail in 
Chapter 4. In the present chapter, we are interested in filtering operations that 

a b c d
Figure 3.12 (a) Same as Fig. 3.10(a). (b) Result of using function adapthisteq with the default values.  
(c) Result of using this function with parameter NumTiles set to [25 25]. Result of using this number of tiles 
and ClipLimit = 0.05. 
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are performed directly on the pixels of an image. Use of the term linear spatial 
filtering differentiates this type of process from frequency domain filtering.

The linear operations of interest in this chapter consist of multiplying each 
pixel in the neighborhood by a corresponding coefficient and summing the re-
sults to obtain the response at each point ( , )x y . If the neighborhood is of size 
m n* , mn coefficients are required. The coefficients are arranged as a matrix, 
called a filter, mask, filter mask, kernel, template, or window, with the first three 
terms being the most prevalent. For reasons that will become obvious shortly, 
the terms convolution filter, convolution mask, or convolution kernel, also are 
used.

Figure 3.13 illustrates the mechanics of linear spatial filtering. The process 
consists of moving the center of the filter mask, w, from point to point in an 
image, f . At each point ( , )x y , the response of the filter at that point is the 
sum of products of the filter coefficients and the corresponding neighborhood 
pixels in the area spanned by the filter mask. For a mask of size m n* , we  
assume typically that m a= 2 1+  and n b= 2 1+  where a and b are nonnega-
tive integers. All this says is that our principal focus is on masks of odd sizes, 
with the smallest meaningful size being 3 3* . Although it certainly is not a 
requirement, working with odd-size masks is more intuitive because they have 
an unambiguous center point.

There are two closely related concepts that must be understood clearly when 
performing linear spatial filtering. One is correlation; the other is convolution. 
Correlation is the process of passing the mask w by the image array f in the 
manner described in Fig. 3.13. Mechanically, convolution is the same process, 
except that w is rotated by 180° prior to passing it by f . These two concepts are 
best explained by some examples.

Figure 3.14(a) shows a one-dimensional function, f, and a mask, w. The ori-
gin of f is assumed to be its leftmost point. To perform the correlation of the 
two functions, we move w so that its rightmost point coincides with the origin 
of f , as Fig. 3.14(b) shows. Note that there are points between the two func-
tions that do not overlap. The most common way to handle this problem is to 
pad f with as many 0s as are necessary to guarantee that there will always be  
corresponding points for the full excursion of w past f . This situation is illus-
trated in Fig. 3.14(c).

We are now ready to perform the correlation. The first value of correlation 
is the sum of products of the two functions in the position shown in Fig. 3.14(c). 
The sum of products is 0 in this case. Next, we move w one location to the right 
and repeat the process [Fig. 3.14(d)]. The sum of products again is 0. After four 
shifts [Fig.  3.14(e)], we encounter the first nonzero value of the correlation, 
which is (2)(1) = 2. If we proceed in this manner until w moves completely 
past f  [the ending geometry is shown in Fig. 3.14(f)] we would get the result in 
Fig. 3.14(g). This set of values is the correlation of w and f . If we had padded 
w, aligned the rightmost element of f with the leftmost element of the padded 
w, and performed correlation in the manner just explained, the result would 
have been different (rotated by 180°), so order of the functions matters in cor-
relation.
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The label 'full' in the correlation in Fig. 3.14(g) is a flag (to be discussed 
later) used by the toolbox to indicate correlation using a padded image and 
computed in the manner just described. The toolbox provides another option, 
denoted by 'same' [Fig.  3.14(h)] that produces a correlation that is of the 
same size as f . This computation also uses zero padding, but the starting posi-
tion is with the center point of the mask (the point labeled 3 in w) aligned 
with the origin of f . The last computation is with the center point of the mask 
aligned with the last point in f .

To perform convolution we rotate w by 180° and place its rightmost point 
at the origin of f, as Fig. 3.14(j) shows. We then repeat the sliding/computing 

Figure 3.13   
The mechanics of 
linear spatial  
filtering. The  
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the mask for ease 
of readability. 
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process employed in correlation, as illustrated in Figs. 3.14(k) through (n). The 
'full' and 'same' convolution results are shown in Figs. 3.14(o) and (p), re-
spectively.

Function f in Fig. 3.14 is a discrete unit impulse that is 1 at a point and 0 
everywhere else. It is evident from the result in Figs. 3.14(o) or (p) that con-
volution with an impulse just “copies” w at the location of the impulse. This 
copying property (called sifting) is a fundamental concept in linear system 
theory, and it is the reason why one of the functions is always rotated by 180° 
in convolution. Note that, unlike correlation, swapping the order of the func-
tions yields the same convolution result. If the function being shifted is sym-
metric, it is evident that convolution and correlation yield the same result.

The preceding concepts extend easily to images, as Fig. 3.15 illustrates. The 
origin is at the top, left corner of image f x y( , ) (see Fig. 2.1). To perform cor-
relation, we place the bottom, rightmost point of w( , )x y  so that it coincides 
with the origin of f x y( , ) as in Fig. 3.15(c). Note the use of 0 padding for the 

Figure 3.14   
Illustration of 
one-dimensional 
correlation and 
convolution. 
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reasons mentioned in the discussion of Fig. 3.14. To perform correlation, we 
move w( , )x y  in all possible locations so that at least one of its pixels over-
laps a pixel in the original image f x y( , ). This 'full' correlation is shown in 
Fig. 3.15(d). To obtain the 'same' correlation in Fig. 3.15(e), we require that all 
excursions of w( , )x y  be such that its center pixel overlaps the original f x y( , ).  
For convolution, we rotate w( , )x y  by 180° and proceed in the same manner 
as in correlation [see Figs.  3.15(f) through (h)]. As in the one-dimensional  
example discussed earlier, convolution yields the same result independently of 
the order of the functions. In correlation the order does matter, a fact that is 
made clear in the toolbox by assuming that the filter mask is always the func-
tion that undergoes translation. Note also the important fact in Figs. 3.15(e) 
and (h) that the results of spatial correlation and convolution are rotated by 
180° with respect to each other. This, of course, is expected because convolu-
tion is nothing more than correlation with a rotated filter mask.

Figure 3.15 
Illustration of 
two-dimensional 
correlation and 
convolution. The 
0s are shown in 
gray to simplify 
viewing. 
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Summarizing the preceding discussion in equation form, we have that 
the correlation of a filter mask w( , )x y  of size m n*  with a function f x y( , ),  
denoted by w( , ) ( , )x y f x y , is given  by the expression

	 w w( , ) ( , ) ( , ) ( , )x y f x y s t f x s y t
t b

b

s a

a

 =
==
∑∑ + +

--

	

This equation is evaluated for all values of the displacement variables x and y so 
that all elements of w visit every pixel in f, which we assume has been padded 
appropriately. Constants a and b are given by a m= ( )- 1 2 and b n= ( )- 1 2. 
For notational convenience, we assume that m and n are odd integers.

In a similar manner, the convolution of w( , )x y  and f x y( , ), denoted by 
w( , ) ( , )x y f x y , is given by the expression

	 w w( , ) ( , ) ( , ) ( , )x y f x y s t f x s y t
t b

b

s a

a

 =
==
∑∑ - -

--

	

where the minus signs on the right of the equation flip f (i.e., rotate it by 180°).  
Rotating and shifting f instead of w is done to simplify the notation. The result 
is the same.† The terms in the summation are the same as for correlation.

The toolbox implements linear spatial filtering using function imfilter, 
which has the following syntax:

g = imfilter(f, w, filtering_mode, boundary_options, size_options)

where f is the input image, w is the filter mask, g is the filtered result, and 
the other parameters are summarized in Table 3.3. The filtering_mode is 
specified as 'corr' for correlation (this is the default) or as 'conv' for con-
volution. The boundary_options deal with the border-padding issue, with the 
size of the border being determined by the size of the filter. These options are 
explained further in Example 3.8. The size_options are either 'same' or 
'full', as explained in Figs. 3.14 and 3.15.

The most common syntax for imfilter is

g = imfilter(f, w, 'replicate')

This syntax is used when implementing standard linear spatial filters in the 
toolbox. These filters, which are discussed in Section 3.5.1, are prerotated by 
180°, so we can use the correlation default in imfilter (from the discussion of 
Fig. 3.15, we know that performing correlation with a rotated filter is the same 
as performing convolution with the original filter). If the filter is symmetric 
about its center, then both options produce the same result.

imfilter

† Because convolution is commutative, we have that w w( , ) ( , ) ( , ) ( , )x y f x y f x y x y = . This is not true of 
correlation, as you can see, for example, by reversing the order of the two functions in Fig. 3.14(a).



128    Chapter 3  ■  Intensity Transformations  and Spatial Filtering

  3.6	 Using Fuzzy Techniques for Intensity  
	 Transformations and Spatial Filtering 

We conclude this chapter with an introduction to fuzzy sets and their applica-
tion to intensity transformations and spatial filtering. We also develop a set of 
custom M-functions for implementing the fuzzy methods developed in this 
section. As you will see shortly, fuzzy sets provide a framework for incorporat-
ing human knowledge in the solution of problems whose formulation is based 
on imprecise concepts. 

3.6.1	 Background
A set is a collection of objects (elements) and set theory consists of tools that 
deal with operations on and among sets. Central to set theory is the no-
tion of set membership.  We are used to dealing with so-called “crisp” sets, 
whose membership can be only true or false in the traditional sense of  
bivalued Boolean logic, with 1 typically indicating true and 0 indicating false. 
For example, let Z denote the set of all people, and suppose that we want to 
define a subset, A, of Z, called the “set of young people.” In order to form this 
subset, we need to define a membership function that assigns a value of 1 or 
0 to every element, z, of Z. Because we are dealing with a bivalued logic, the 
membership function defines a threshold at or below which a person is consid-
ered young, and above which a person is considered not young. Figure 3.20(a) 
summarizes this concept using an age threshold of 20 years, where mA z( )  
denotes the membership function just discussed.

We see immediately a difficulty with this formulation: A person 20 years of 
age is considered young, but a person whose age is 20 years and 1 second is 
not a member of the set of young people. This is a fundamental problem with 
crisp sets that limits their use in many practical applications. What we need is 
more flexibility in what we mean by “young;” that is, a gradual transition from 
young to not young. Figure 3.20(b) shows one possibility. The essential feature 
of this function is that it is infinite-valued, thus allowing a continuous transition  
between young and not young. This makes it possible to have degrees of “young-
ness.” We can make statements now such as a person being young (upper flat 
end of the curve), relatively young (toward the beginning of the ramp), 50% 
young (in the middle of the ramp), not so young (toward the end of the ramp), 
and so on (note that decreasing the slope of the curve in Fig. 3.20(b) introduces 
more vagueness in what we mean by “young”). These types of vague (fuzzy) 
statements are more consistent with what we humans use when talking impre-
cisely about age. Thus, we may interpret infinite-valued membership functions 
as being the foundation of a fuzzy logic, and the sets generated using them may 
be viewed as fuzzy sets.

3.6.2	 Introduction to Fuzzy Sets
Fuzzy set theory was introduced by L. A. Zadeh (Zadeh [1965]) more than 
four decades ago. As the following discussion shows, fuzzy sets provide a for-
malism for dealing with imprecise information.
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Definitions

Let Z be a set of elements (objects), with a generic element of Z denoted by z; 
that is, Z z= { }. Set Z often is referred to as the universe of discourse. A fuzzy 
set A in Z is characterized by a membership function, mA z( ), that associates 
with each element of Z a real number in the interval [0, 1]. For a particular 
element z0 from Z, the value of mA z( )0  represents the degree of membership 
of z0 in A. 

The concept of “belongs to,” so familiar in ordinary (crisp) sets, does not 
have the same meaning in fuzzy set theory. With ordinary sets we say that an 
element either belongs or does not belong to a set. With fuzzy sets we say that 
all z's for which mA z( ) = 1 are full members of the set A, all z's for which mA z( ) 
is between 0 and 1 have partial membership in the set, and all z's for which 
mA z( ) = 0 have zero degree of membership in the set (which, for all practical 
purposes, means that they are not members of the set).

For example, in Fig. 3.20(b) mA( ) .25 0 5= , indicating that a person 25 years 
old has a 0.5 grade membership in the set of young people. Similarly two people 
of ages 15 and 35 have 1.0 and 0.0 grade memberships in this set, respectively. 
Therefore, a fuzzy set, A, is an ordered pair consisting of values of z and a mem-
bership function that assigns a grade of membership in A to each z. That is, 

	 A z z z ZA= ∈{ }, ( ) |m 	

When z is continuous, A can have an infinite number of elements. When z is 
discrete and its range of values is finite, we can tabulate the elements of A  
explicitly. For example, if the age in Fig. 3.20 is limited to integers, then A can 
be written explicitly as

	A = ( , ), ( , ), , ( , ), ( , . ), ( , . ), , ( , . ), ( , )1 1 2 1 20 1 21 0 9 22 0 8 29 0 1 30 0… … ,, ( , ),31 0 …{ } 	

Note that, based on the preceding definition, ( , )30 0  and pairs thereafter are 
included of A, but their degree of membership in this set is 0. In practice, they 
typically are not included because interest generally is in elements whose  
degree of membership is nonzero. Because membership functions determine 
uniquely the degree of membership in a set, the terms fuzzy set and mem-
bership function are used interchangeably in the literature. This is a frequent 
source of confusion, so you should keep in mind the routine use of these two 

The term grade of 
membership is used also 
to denote what we have 
defined as the degree of 
membership.
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terms to mean the same thing. To help you become comfortable with this  
terminology, we use both terms interchangeably in this section. When mA z( ) 
can have only two values, say, 0 and 1, the membership function reduces to the  
familiar characteristic function of ordinary sets. Thus, ordinary sets are a spe-
cial case of fuzzy sets.

Although fuzzy logic and probability operate over the same [0, 1] interval, 
there is a significant distinction to be made between the two. Consider the 
example from Fig. 3.20. A probabilistic statement might read: “There is a 50% 
chance that a person is young,” while a fuzzy statement might read “A per-
son's degree of membership in the set of young people is 0.5.” The difference 
between these two statements is important. In the first statement, a person is 
considered to be either in the set of young or the set of not young people; we 
simply have only a 50% chance of knowing to which set the person belongs.  
The second statement presupposes that a person is young to some degree, with 
that degree being in this case 0.5. Another interpretation is to say that this is 
an “average” young person: not really young, but not too near being not young.  
In other words, fuzzy logic is not probabilistic at all; it just deals with degrees 
of membership in a set. In this sense, we see that fuzzy logic concepts find  
application in situations characterized by vagueness and imprecision, rather 
than by randomness.

The following definitions are basic to the material in the following sections.

Empty set: A fuzzy set is empty if and only if its membership function is identi-
cally zero in Z.

Equality: Two fuzzy sets A and B are equal, written A B= , if and only if 
m mA Bz z( ) ( )=  for all z Z∈ .

Complement: The complement (NOT) of a fuzzy set A, denoted by A, or 
NOT(A), is defined as the set whose membership function is

	 m m
A Az z( ) ( )= 1 - 	

for all z Z∈ .

Subset: A fuzzy set A is a subset of a fuzzy set B if and only if 

	 m mA Bz z( ) ( )… 	

for all z Z∈ .

Union: The union (OR) of two fuzzy sets A and B, denoted A B´ , or  
A OR B, is a fuzzy set U with membership function

	 m m mU A Bz z z( ) max ( ), ( )=   	

for all z Z∈ .

The notation “for all 
z Z∈ ” reads “for all z 
belonging to Z.”
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Intersection: The intersection (AND) of two fuzzy sets A and B, denoted, A B¨  
or A AND B, is a fuzzy set I with membership function

	 m m mI A Bz z z( ) min ( ), ( )=  	

for all z Z∈ .
Note that the familiar terms NOT, OR, and AND are used interchangeably 

with the symbols  , ´, and ¨ to denote set complementation, union, and inter-
section, respectively.

■ Figure 3.21 illustrates some of the preceding definitions. Figure 3.21(a) 
shows the membership functions of two sets, A and B, and Fig. 3.21(b) shows 
the membership function of the complement of A. Figure 3.21(c) shows the 
membership function of the union of A and B, and Fig. 3.21(d) shows the cor-
responding result for the intersection of these two sets. The dashed lines in Fig. 
3.21are shown for reference only. The results of the fuzzy operations indicated 
in Figs. 3.21(b)-(d) are the solid lines.

You are likely to encounter examples in the literature in which the area  
under the curve of the membership function of, say, the intersection of two 
fuzzy sets, is shaded to indicate the result of the operation. This is a carry over 
from ordinary set operations and is incorrect. Only the points along the mem-
bership function itself (solid line) are applicable when dealing with fuzzy sets. 
This is a good illustration of the comment made earlier that a membership 
function and its corresponding fuzzy set are one and the same thing. 	 ■

Membership functions

Table 3.6 lists a set of membership functions used commonly for fuzzy set 
work. The first three functions are piecewise linear, the next two functions are 
smooth, and the last function is a truncated Gaussian. We develop M-functions 
in Section 3.6.4 to implement the six membership functions in the table.

EXAMPLE 3.13:
Illustration of 
fuzzy set defini-
tions.

c
a b

d
Figure 3.21 
(a) Membership 
functions of two 
fuzzy sets, A and 
B. (b) Member-
ship function of 
the complement 
of A. (c) and (d) 
Membership func-
tions of the union 
and intersection 
of A and B.
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Name Equation Plot
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TABLE 3.6 Some commonly-used membership functions and corresponding plots.

† Typically, only the independent variable, z, is used as an argument when writing m( )z  in order to simplify notation. We made an 
exception in the S-shape curve in order to use its form in writing the equation of the Bell-shape curve. 
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3.6.3	 Using Fuzzy Sets
In this section we develop the foundation for using fuzzy sets, and then apply 
the concepts developed here to image processing in Sections 3.6.5 and 3.6.6. 

We begin the discussion with an example. Suppose that we want to develop 
a fuzzy system to monitor the health of an electric motor in a power generating 
station. For our purposes, the health of the motor is determined by the amount 
of vibration it exhibits. To simplify the discussion, assume that we can accom-
plish the monitoring task by using a single sensor that outputs a single number: 
average vibration frequency, denoted by z. We are interested in three ranges of 
average frequency: low, mid, and high. A motor functioning in the low range 
is said to be operating normally, whereas a motor operating in the mid range 
is said to be performing marginally. A motor whose average vibration is in the 
high range is said to be operating in the near-failure mode. 

The frequency ranges just discussed may be viewed as fuzzy (in a way simi-
lar to age in Fig. 3.20), and we can describe the problem using, for example, the 
fuzzy membership functions in Fig. 3.22(a). Associating variables with fuzzy 
membership functions is called fuzzification. In the present context, frequency 
is a linguistic variable, and a particular value of frequency, z0, is called a linguis-
tic value. A linguistic value is fuzzified by using a membership function to map 
it to the interval [0, 1]. Figure 3.22(b) shows an example.

Keeping in mind that the frequency ranges are fuzzy, we can express our 
knowledge about this problem in terms of the following fuzzy IF-THEN 
rules:

R1: IF the frequency is low, THEN motor operation is normal.

OR

To simplify notation, 
we use frequency to 
mean average vibration 
frequency from this 
point on.

The part of an if-then 
rule to the left of THEN 
is the antecedent (or 
premise). The part to the 
right is called the conse-
quent (or conclusion.)

b
a

Figure 3.22 
(a) Membership 
functions used to 
fuzzify frequency 
measurements. 
(b) Fuzzifying a 
specific measure-
ment, z0.
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